نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد مرکز تحقیقات بیوتکنولوژی، دانشگاه شهید چمران اهواز ، اهواز، ایران.

2 کارشناسی ارشد گروه زیست شناسی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

 



دمولسیفایرهای شیمیایی که برای شکست امولسیون‌های آب در نفت بکار می‌روند سمی هستند و اثرات زیان‌باری بر محیط-زیست دارند. به همین دلیل بیودمولسیفایرها به عنوان ترکیبات سازگار با محیط زیست به عنوان یک جایگزین مطرح هستند. هدف از تحقیق حاضر دستیابی به باکتری‌های مولد بیودمولسیفایر است. برای این منظور با نمونه‌گیری از رسوبات نفتی، جدایه‌های مولد بیـودمولسیفایر با استفاده از روش‌های غنی‌سازی در محیط پایه نمکی با پارافین مایع جداسازی و جدایه‌های برتر با استفاده از روش‌های کمی و کیفی غربالگری انتخاب شدند. شرایط رشد بهینه این جدایه‌ها و اثر نوع منبع کربن بر تولید بیودمولسیفایر بررسی و با استفاده از روش‌های فنوتیپی و تعیین توالی ژن 16S rRNA تعیین هویت گردیدند. در نتیجه‌ی این تحقیق جدایه‌هایHS20 و HS22 به ترتیب با 43/71 و 71/85 درصد شکست امولسیون آب در نفت سفید به عنوان Alcaligenes sp. strain HS20 و Alcaligenes sp. strain HS22 شناسایی شدند. دما، pH و منبع نیتروژن بهینه رشد جدایهHS20 40 درجه سانتی‌گراد، 7 و سدیم نیترات و برای جدایه HS22 35 درجه سانتی-گراد، 7 و آمونیوم نیترات بود. بیودمولسیفایر جدایه HS20 خارج سلولی و جدایه HS22 در دو موقعیت خارج سلول و متصل به سلول حضور دارد. هر دو جدایه در حضور منابع کربنی هیدروفیل یا مخلوط هیدروکربن‌های هیدروفیل و هیدروفوب توانایی تولید بیودمولسیفایر دارند. نتایج این پژوهش نشان داد این جدایه‌ها توانایی تولید بیودمولسیفایر و شکست امولسیون آب در نفت را در حد مناسبی دارند. بنابراین ارزیابی پتانسیل این سویه‌ها به مـنـظـور بهبود شکست امولسیون-های نامطلوب آب در نفت خام در مقیاس صنعتی پیشنهاد می‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Isolation of biodemulsifier producing bacteria from petroleum-contaminated deposits of Abadan Oil Refinery

نویسندگان [English]

  • Hossein motamedi 1
  • Hoda Sabati 2

1 Professor Biotechnology Research Center, Shahid Chamran University of Ahvaz Ahvaz, Iran.

2 M cs Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

Chemical demulsifiers that are used for breaking water in oil emulsions, are toxic and have adverse side effects for environment. So, biodemulsifiers have been suggested as an environmental friendly alternative. The aim of this study was to achieve biodemulsifier producing bacteria. For this purpose, biodemulsifier producing bacteria were isolated from deposits in oil reservoirs in petroleum refinery through enrichment in saline-based enrichment medium with liquid paraffin and screened in quantitative and qualitative screening methods. Optimum growth condition of the selected isolates as well as the effect of carbon source on biodemulsifier production were assessed and these isolates were identified based on phenotypic methods a sequencing of 16S rRNA gene. As a result, HS20 and HS22 isolates with 71.43 and 85.71percentage demulsification of water in kerosene were identified as Alcaligenes sp. strain HS20 and Alcaligenes sp. strain HS22, respectively. Optimum temperature, pH and nitrogen source for HS20 were as 40°C, 7 and NaNO3 and for HS22 were 35°C, 7 and NH4NO3. The HS20 biodemulsifier was extracellular while in case of HS22 was in both extracellular and cell attached forms. Both isolates were able to produce biodemulsifier in the presence of hydrophilic and/or mixture of hydrophilic and hydrophobic hydrocarbons. The results of this study showed that these isolates have appropriate biodemulsifier production and emulsion breaking. Therefore, evaluation of their potential to improve the breakdown of undesirable water in crude oil emulsions at industrial scale is proposed.

کلیدواژه‌ها [English]

  • Biodemulsifier
  • Biological separation
  • Water in oil emulsion
  • Emulsion breaking
 
Amirabadi, S.Sh., Jahanmiri, A., Rahimpour, M.R., Nia, B.R., Darvishi, P. and Niazi, A. (2013). Investigation of Paenibacillus alvei ARN63 ability for biodemulsifier production: medium optimization to break heavy crude oil emulsion. Colloids Surf B Biointerfaces109:244-252.
Atta, A.M., Allohedan, H.A., El-Mahdy, G.A. (2014). Dewatering of petroleum crude oil emulsions using modified Schiff base polymeric surfactants. J Pet Sci Eng 122: 719-728.
Chen, B.Y. PCR cloning protocols. 2ndedition. New York: Humana Press; 2002:196-235.
E Silva, F. C. P. R., Roque, B. A. C., e Silva, N. M. P. R., Rufino, R. D., Luna, J. M., Santos, V. A. and Sarubbo, L. A. (2017). Yeasts and bacterial biosurfactants as demulsifiers for petroleum derivative in seawater emulsions. AMB Express 7(1): 202.
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
Gadhave, A. (2014). Determination of hydrophilic-lipophilic balance value. IJSR3(4):573-75.
Hou, N., Feng, F., Shi, Y., Cao, H., Li, Ch., Cao, Zh. and Cheng, Y. (2014). Characterization of the extracellular biodemulsifiers secreted by Bacillus cereus LH-6 and the enhancement of demulsifying efficiency by optimizing the cultivation conditions. Environ Sci Pollut Res Int 21(17): 10386-10398.
Huang, X.F., Guan, W., Liu, J., Lu, L.J., Xu, J.C. and Zhou, Q. (2010). Characterization and phylogenetic analysis of biodemulsifier-producing bacteria. Bioresour Technol 101(1): 317-323.
Huang, X.F., Li, M.X., Lu, L.J., Yang, S. and Liu, J. (2012). Relationship of cell-wall bound fatty acids and the demulsification efficiency of demulsifying bacteria Alcaligenes sp. S-XJ-1 cultured with vegetable oils. Bioresour Technol 104:530-536.
Huang, X.F., Liu, J., Lu, L.J., Wen, Y., Xu, J.C., Yang, D.H. and Zhou, Q. (2009). Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by Alcaligenes sp. Bioresour Technol 100(3):1358-1365.   
Huang, X.F., Peng, K., Feng, Y., Liu, J. and Lu, L. (2013). Separation and characterization of effective demulsifying substances from surface of Alcaligenes sp. S-XJ-1 and its application in water-in-kerosene emulsion. Bioresour Technol 139: 257-264.
Kiran, G.S., Nishanth, L.A., Priyadharshini, S., Anitha, K. and Selvin, J. (2014). Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotechnol 14(1):1-10.
Kontogeorgis, G.M. and Kiil, S. (2016). Emulsions. Pp.269-282. In: Introduction to applied colloid and surface chemistry, 1st edition. John Wiley & Sons. Chichester, UK.
Kronberg, B, Holmberg, K. and Lindman, B. (2014). Emulsions and emulsifiers. Pp.431-445. In: Surface chemistry of surfactants and polymers. 1st edition. John Wiley & Sons. Chichester, UK.
Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870-1874.
Li, Gh. Zhang, X. and Huang, W. (2000). Characteristics of degrading microorganism distribution in polluted soil with petroleum hydrocarbons. Huan Jing Ke Xue 21(4): 61-64.
Li, X., Li, A., Liu, Ch., Yang, J., Ma, F., Hou, N., Xu, Y. and Ren, N. (2012). Characterization of the extracellular biodemulsifier of Bacillus mojavensis XH1 and the enhancement of demulsifying efficiency by optimization of the production medium composition. Process Biochem 47(4):626-634.
Liu, J., Huang, X.F, Lu, L.J., Xu, J.C., Wen, Y., Yang, D.H. and Zhou, Q. (2009). Comparison between waste frying oil and paraffin as carbon source in the production of biodemulsifier by Dietzia sp. S-JS-1. Bioresour Technol 100(24):6481-6487.
Liu, J., Huang, X.F., Lu, L.J., Xu, J.C., Wen, Y., Yang, D.H. and Zhou, Q. (2010). Optimization of biodemulsifier production from Alcaligenes sp. S-XJ-1 and its application in breaking crude oil emulsion. J HazardMater 183(1-3):466-473.
Liu, J., Peng, K., Huang, X., Lu, L., Cheng, H., Yang, D., Zhou, Q. and Deng, H. (2011). Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S-XJ-1. J Environ Sci 3(6):1020-1026.
Luna, J.M., Rufino, R.D., Jara, A.M.A.T, Brasileiro, P.P.F. and Sarubbo, L.A. (2015). Environmental applications of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Colloids Surf A Physicochem Eng Asp 480: 413-418.
Mohebali, G., Kaytash, A. and Etemadi, N. (2012). Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1. Colloids Surf B Biointerfaces 98:120-128.
Sabati, H. and Motamedi, H. (2018). Ecofriendly demulsification of water in oil emulsions by an efficient biodemulsifier producing bacterium isolated from oil contaminated environment. Biotechnol Lett 40(7): 1037-1048.
Sad, C.M.S., Santana, Í.L., Morigaki, M.K., Medeiros, E.F., Castro, E.V.R., Santos, M.F.P. and Filgueiras, P.R. (2015). New methodology for heavy oil desalination. Fuel 150: 705-710.
Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425.
Salehizadeh, H., Ranjbar, A. and Kennedy, K. (2013). Demulsification capabilities of a Microbacterium species for breaking water in crude oil emulsions. Afr J Biotechnol 12(16):2019-2026.
Tamura, K., Nei, M., and Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A101:11030-11035.
Thavasi, R., Sharma, S. and Jayalakshmi, S. (2011). Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Pet Environ Biotechnol 1:1-6.
Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697-703.
Yan, P., Lu, M., Yan, Q., Zhang, H., Zhang, Z., Chen, R. (2012). Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresour Technol 116:24-28.