Abdoli, A., & Ghassemi-Golezani, K. (2025). Foliar treatments of salicylic acid and iron nanoparticles enhanced antioxidant potential and essential oil production of ajowan under salt stress. Plant Biosystems-An International Journal Dealing With All Aspects of Plant Biology, 5: 1-11. https://doi://doi.org/10.1080/11263504.2024.2446790
Ali, M., Ijaz, M., Ikram, M., Ul-Hamid, A., Avais, M. , & Anjum, A.A. (2021). Biogenic synthesis, characterization and antibacterial potential evaluation of copper oxide nanoparticles against Escherichia coli. Nanoscale Research Letters.16, 148. https: //doi. org/10. 1186/ s11671-021-03605-z
Alpaslan, M., Inal, A., Gunes, A., Cikili, Y., & Oscan, H. (1999). Effect of zinc treatment on the alleviation of sodium and chloride injury in tomato (Lycopersicum esculentum (L.) Mill. cv. Lale) grown under salinity. Turkish Journal of Botany, 23(1), 1-6.
Amaranathareddy, V., Lokesh, U., Venkatesh, B., & Sudhakar, C. (2015). Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L.) cultivars. Agricultural Sciences, 6, 1283-1297.AOAC. (1990). Official methods of analysis. Association of Official Agricultural Chemists., Washington., DC.
Aslam, M., Saeed, M.S., Sattar, S., Sajad, S., Sajjad, M., Adnan, M., Iqbal, M., & Sharif, M.T. (2017). Specific role of proline against heavy metals toxicity in plants. Indian Journal of Pure & Applied Biosciences, 5, 27–34. http: //dx. doi. org/10. 18782/2320-7051. 6032
Badshah, I., Mustafa, N., Khan, R., Mashwani, Z. R., Raja, N. I., Almutairi, M. H., Aleya, L., Sayed, A.A., Zaman., S., Sawati, L., & Sohail, K. (2023). Biogenic titanium dioxide nanoparticles ameliorate the effects of salinity stress in wheat crop. Agronomy, 13(2), 352. https: //doi. org/10. 3390/agronomy13020352.
Boudsocq, M., & Sheen, J. (2013). CDPKs in immune and stress signaling. Trends Plant Science, 18, 30–40. https: //doi. org/10. 1016/j. tplants., 2012. 08. 008
Chang, C.C., Yang, M.H., Wen, H. M., & Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. : https: //doi. org/10. 38212/2224-6614. 2748
Diao, M., Ma, L., Wang, J., Cui, J., Fu, A., & Liu, H. (2014). Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defence system. Journal of Plant Growth Regulation, 33, 671-682. https: //doi. org/10. 1007/s00344-014-9416-2
El-Naggar, A., El-Kiey, M., Koreish, E., & Zaid, N.M. (2020). Physiological response of gazania plants to growing media and organic compost. Scientific Journal of Flowers and Ornamental Plant, 7(1), 11-26. https: //doi. org/10. 21608/sjfop. 2020. 91393
El-Saadony, M.T., ALmoshadak, A.S., Shafi, M.E., Albaqami, N.M., Saad, A.M., El-Tahan, A.M., & Helmy, A.M. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi Journal of Biological Sciences, 12(9), 1-11. https: //doi. org/10. 1016/j. sjbs. 2021. 08. 032
Fedina, I., Georgieva, K., Velitchkova, M., & Grigorova, I. (2006). Effect of pretreatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environmental and Experimental Botany, 56, 225-230. https://doi. org/10. 1016/j. envexpbot. 2005. 02. 006
Ghaffari Yaichi, Z., Hassanpouraghdam, M.B., Rasouli, F. Aazami, M.A, Vojodi Mehrabani, L., Fathpour Jabbari, S., Asadi, M., Esfandiari, E. & Jimenez-Becker, S. (2025). Zinc oxide nanoparticles foliar use and arbuscular mycorrhiza inoculation retrieved salinity tolerance in Dracocephalum moldavica L. by modulating growth responses and essential oil constituents. Scientific Reports, 15, 492 https://doi.org/10.1038/s41598-024-84198-2
Ghanbari, F., Bag-Nazari, M., & Azizi, A. (2023). Exogenous application of selenium and nano-selenium alleviates salt stress and improves secondary metabolites in Lemon verbena under salinity stress. Scientific Report, 13, 5352. https: //doi. org/10. 1038/s41598-023-32436-4
Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59(2), 315-318. https: //doi. org/10. 1104/pp. 59. 2. 315
Gupta, S., & Pandey, S. (2020). Enhanced salinity tolerance in the common bean (Phaseolus vulgaris) plants using twin ACC deaminase producing rhizobacterial inoculation. Rhizosphere, 16, 100241. https: // doi. org/ 10. 1016/j. rhisph. 2020. 100241
Handa, N., Kohli, S.K., Sharma, A., Thukral, A.K., Bhardwajo, R., Abd-allah, E.F., Alqarawi, A.A., & Ahmad, P. (2019). Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environmental and Experimental Botany. 161, 180-192. https: //doi. org/10. 1016/j. envexpbot. 2018. 11. 009
Hassan, U., Aamer, M.M., Chattha, M.U., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture. 10, 396. https: // doi. org/ 10. 3390/ agric ultur e1009 0396
Hassanpouraghdam, M.B., Vojodi Mehrabani, L., Badali, R., Aazami, Ma., Rasouli, F., Kakaei, K., & Szczepanek, M. (2022). Cerium Oxide salicylic acid nanoparticles (CeO2: Sa-NPs) foliar application and in- soil animal manure use influence the growth and physiological responses of Aloe vera L. Agronomy, 12, 731. https: //doi. org/10. 3390/agronomy12030731.
Hawrylak -Nowak, B., Rubinowska, K., & Jolonta, M. (2019). Selenium-induced improvements in the ornamental value and salt stress resistance of Plectranthus scutellarioides (L.) R. Br. Folia Horticulturae, 3(1). DOI: 10. 2478/fhort-2019-0016
Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https: //doi. org/10. 1016/0003-9861(68)90654-1
Hamed, K.B., Castagna, A., Salem, E., Ranieri, A., & Abdelly, C. )2007(. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53(3): 185-194
Hendawy, S.F., & Khalid, K.A. (2005). Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. Journal of Applied Sciences Research, 1(2), 147-155.
Hezaveh, T.A., Pourakbar, L., Rahmani, F., & Alipour, H. (2020). Effects of ZnO NPs on phenolic compounds of rapeseed seeds under salinity stress. Journal of Plant Process and Function, 8, 11–18. http: // jispp. iut. ac. ir/ artic
Hitter, T., Paula, O., Buta, E., & Cantor, M. (2022). Ornamental plnts used in landscape architecture design a biblical garden. Current Trends in Natural Sciences, 9(17), 249-256. Doi: 10. 47068/ctns. 2020. v9i17. 031
Hussain, S., Bai, Z., Huang, J., Cao, X., Zhu, L., Zhu, C., Khaskheli, MA., Zhong, C., Jin, Q., & Zhang, J. (2019). 1-methylcyclopropene modulates physiological., biochemical., and antioxidant responses of rice to diferent salt stress levels. Frontiers in Plant Science, 10,124. https: //doi. org/ 10. 3389/fpls. 2019. 00124
Hussein, M.M., & Abou-Baker, N.H. (2018). The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society open Science, 5, 171809. Doi:. org/10. 1098/sos. 171809.
Kahlel, A., Ghidan, A., Al-Antary, T.A., Alshomali, I., & Asouf, H. (2020). Efects of nanotechnology liquid fertilizers on certain vegetative growth of broad bean (Vicia faba L.). Fresenius Environmental Bulletin, 29, 4763- 4768.
Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M.S., Saleem, M.H., Adil, M., Heidari, P., & Chen, J.T. (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, 21, 148. https: //doi. org/10. 3390/ijms21010148le-1- 1222- en. html.
Lowry, O. H., Rosenbrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the phenol reagent. Journal of Biological Chemistry,193, 265- 75. https: //doi. org/10. 1016/S0021-9258(19)52451-6
Luhova, L., Lebeda., A., Hedererová., D., & Pec. P. (2003). Activities of amine oxidase., peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil and Environment,. 49, 151-157.
Marschner, H. (1995). Mineral nutrient of higher plants. 2nd Edition. London: Academic Press Limited., Harcourt Brace and Company Publisher https: //doi. org/10. 1146/annurev. pp. 31. 060180. 001323
Mishra, L.K., & Abidi, A.B. (2010). Phosphorus-zinc interaction: effects on yield components., biochemical composition and bread making qualities of wheat. World Applied Science, 10, 568–573.
Mogazy, A.M., & Hanafy, R.S. (2022). Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress efect on Vicia faba Plants. Journal of Soil Science and Plant Nutrition, 22, 2647–2662.
Mozafari, A.A., Ghdakchi asl, A., & Chaderi, N. (2018). Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiology and molecular Biology of Plants, 24(1), 25-35
Munns, R., & Tesster, M. (2008). Mechanism of salinity tolorance. Annual Review of Plant Biology, 59: 651-658. https: //doi. org/10. 1146/annurev. arplant. 59. 032607. 092911
Nasiri Y., Zehtab-Salmasi S., Nasrullahzadeh S., Najafi N., & Ghassemi-Golezani K. (2010). Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomilla L.). Journal of Medicinal Plants Research, 4(17), 1733-1737. DOI: 10. 5897/JMPR10. 083
Negacz, K., Malek, Z., de Vos, A., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203. https: //doi. org/10. 1016/j. jaridenv. 2022. 104775
Pessarakli, M. (2016). Handbook of Photosynthesis. 3rd edn. CRC press. 846 pages.
Qu, Y.N., Zhou, Q., & Yu, B.J. (2009). Effects of Zn2+ and niflumic acid on photosynthesis in Glycine soja and Glycine max seedlings under NaCl stress. Environmental and Experimental Botany, 65, 304-309. https: //doi. org/10. 1016/j. envexpbot. 2008. 11. 005
Rasool, A., Shah, W.H., Mushtaq, N.U., Saleem, S., Hakeem, K.H., & ul Rehman, R. (2022). Amelioration of salinity induced damage in plants by selenium application: A review, South African Journal of Botany, 174, 98-105. https: //doi. org/10. 1016/j. sajb. 2021. 12. 029.
Shahraki, B., Bayat, H., Aminifard, M.H. & Azami Atajan, F. (2022).effects of foliar application of selenium and nano-selenium on growth, flowering, and antioxidant activity of pot marigold (Calendula officinalis L.) under salinity stress conditions. Communications in Soil Science and Plant Analysis, 53(20), 2749-2765.
Singh, A., Rajput, DV., Sharma, R., Ghazaryan, K., & Minkina, T. (2023). Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, 35, https: //doi. org/10. 1016/j. envres.
Subramanyam, K., Du Laing, G., & Van Damme, E.J.M. (2019). Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity Stress in rice. Frontiers in Plant Science, 10, doi: 10. 3389/fpls. 2019. 00116.
Vojodi Mehrabani L., Anvari Gheshlagh Y., & Motallebi Azar A. (2022). Foliar application of nano Fe and Se affected the growth and yield of Pelargonium graveolens under Salinity Stress. Journal of Horticultural Science, 36 (1), 213-228. https: //doi. org/10. 22067/jhs. 2021. 69767. 1041
Vojodi Mehrabani, L.V., Hassanpouraghdam, M.B., & Shamsi-Khotab, T. (2018). The effects of common and nano-zinc foliar application on the alleviation of salinity stress in Rosmarinus officinalis L. Acta Scientiarum Polonorum Hortorum Cultus, 17(6), 65-73. https: //doi. org/10. 24326/asphc. 2018. 6. 7
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Badakhshan, H. (2014). Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine Max L.). Journal of Plant Nutrition, 37, 2255–2269. https: // doi. org/ 10. 1080/ 01904 167. 2014. 920386
Xue, T.L., Hartikainen H., & Piironen, V. (2001). Antioxidative and growth-promoting effects of selenium on senescing lettuce. Plant and Soil, 237, 55-61. https: //doi. org/10. 1023/A: 1013369804867
Zeng, J., Wang, D., Wu, Y., Guo, X., Zhang, Y., & Lu, X. (2016). Karyotype analysis of Gazania rigens varieties. Horticultural Plant Journal, 2(5), 279-283. https: //doi. org/10. 1016/j. hpj. 2016. 07. 004.
Zhang, M., Gao, B., Chen, J., & Li, YC. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17(2), 78. https: //doi. org/10. 1007/s11051-015-2885-9.
Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D., & Barrow, C. (2006). A simple 96 well microplate method for estimation of total polyphenol content in seaweds. Journal of Applied Phycology, 18, 445-450. Doi: 10. 1007/s10811-006-9048.