نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار .گروه علوم گیاهی، دانشکده زیست شناسی، دانشکدگان علوم، دانشگاه تهران، تهران، ایران

2 دانشیار ،گروه زیست فناوری مولکولی گیاهی، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، تهران، ایران

10.22051/jab.2024.46949.1622

چکیده

مقدمه: تنش شوری بعنوان یکی از تنش های غیر زیستی مهم، اثرات زیان باری بر عملکرد در واحد سطح بسیاری از باغات پسته کشور داشته است. گیاهان برای سازگاری با شرایط تنش زای محیطی از سازوکارهای مختلفی از جمله تنظیم بیان ژنها پس از رونویسی با واسطه miRNA ها استفاده می کنند.

روش ها: شناسایی ژنهای هدف miRNA های منتخب در مقابل ژنهای دو ژنوتیپ متحمل (قزوینی) و حساس (سرخس) به شوری پسته انجام شد. بررسی هستی شناسی ژنهای هدف miRNA های منتخب و بررسی الگوی بیان miRNA های منتخب تحت تیمارهای NaCl و SA و تیمار ترکیبی NaCl+SA صورت گرفت.

یافته ها: شناسایی ژن های هدف پاسخگر به تنش شوری برای miR172، منجر به یافتن 113 و 123 ژن هدف به ترتیب برای ژنوتیپ قزوینی و سرخس شد. در ژنوتیپ قزوینی و سرخس برای miR399 به ترتیب 93 و 77 ژن هدف شناسایی شد. هستی شناسی ژنهای هدف این miRNA ها نقش آنها را در پاسخ به محرک های شیمیایی، فرآیندهای متابولیسمی مرتبط با ماکرومولکولها، اتصال به نوکلئوتید و ATP، فرآیندهای متابولیکی اولیه، تنظیم فعالیت کاتالیزوری آنزیم های هیدرولاز، ترانسفراز و اکسیدو ردوکتاز نشان می دهد.

نتیجه گیری: تفاوت در الگوی بیان miR172 و miR399 در پاسخ به تنش شوری بین ژنوتیپ های متحمل و حساس به شوری نشان دهنده نقش تعیین کننده این miRNA ها در تنظیم سازوکارهای تحمل به تنش شوری در گیاه پسته است. علاوه براین، یافته های این پژوهش نقش بالادستی علامت دهی هورمون سالیسیلیک اسید در کنترل بیان miRNA ها را مشخص می کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of salicylic acid treatment on the expression pattern of miR172 and miR399 under salt stress conditions and the gene ontology (GO) enrichment analysis of their target genes in pistachio (Pistacia vera L.)

نویسندگان [English]

  • masoumeh jannesar 1
  • Seyed Mahdi Seyedi 2

1 Assistant Professor, Department of Plant Sciences, Faculty of Biology, Faculties of Sciences, University of Tehran, Tehran, Iran

2 Associate Professor.Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.

چکیده [English]

Background: Salinity stress, as one of the important abiotic stresses, harms the yield per unit area of many pistachio orchards in Iran. Plants use various mechanisms to adapt to environmental stress conditions, including post-transcriptional gene expression regulation through miRNAs.

Methods: Target genes of selected miRNAs were identified against the genes of salt-tolerant (Ghazvini) and sensitive (Sarakhs) pistachio genotypes. The GO enrichment analysis of target genes of selected miRNAs and the expression pattern of selected miRNAs under NaCl, SA, and combined treatment of NaCl+SA were measured.

Findings: Salt-responsive target gene prediction of miR172 led to the finding of 113 & 123 target genes for the Ghazvini & Sarakhs genotypes, respectively. Moreover, 93 & 77 target genes were identified for miR399 in the Ghazvini & Sarakhs genotypes. The GO enrichment analysis of the miRNA target genes shows their role in response to chemical stimuli, metabolic processes related to macromolecules, binding to nucleotides & ATP, primary metabolic processes, regulating the catalytic activity of hydrolase, transferase, & oxidoreductase enzymes.

Conclusion: The difference in the expression pattern of miR172 and miR399 in response to salt stress between the tolerant and sensitive genotypes indicates the decisive role of these miRNAs in regulating salt stress tolerance mechanisms in pistachio plants. In addition, the findings of this research improve the upstream role of the salicylic acid hormone signaling pathway in the regulation of miRNA expression.

کلیدواژه‌ها [English]

  • Pistachio
  • Salt Stress
  • Salicylic Acid
  • miR172
  • miR399
Aung, K., Lin, S. I., Wu, C. C., Huang, Y. T., Su, C. L., & Chiou, T. J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol, 141(3), 1000-1011. https://doi.org/10.1104/pp.106.078063
    Bari, R., Datt Pant, B., Stitt, M., & Scheible, W. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 141(3), 988-999. https://doi.org/10.1104/pp.106.079707
       Çakır Aydemir, B., Yüksel Özmen, C., Kibar, U., Mutaf, F., Büyük, P. B., Bakır, M., & Ergül, A. (2020). Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS One, 15(7), e0236424. https://doi.org/10.1371/journal.pone.0236424
        Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., & Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 33(20), e179. https://doi.org/10.1093/nar/gni178
        Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signal Behav, 4(6), 493-496. https://doi.org/10.4161/psb.4.6.8392
       Cheng, X., He, Q., Tang, S., Wang, H., Zhang, X., Lv, M., Liu, H., Gao, Q., Zhou, Y., Wang, Q., Man, X., Liu, J., Huang, R., Wang, H., Chen, T., & Liu, J. (2021). The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. New Phytol, 230(3), 1017-1033. https://doi.org/10.1111/nph.17211
       Cheng, X., Zhang, S., Tao, W., Zhang, X., Liu, J., Sun, J., Zhang, H., Pu, L., Huang, R., & Chen, T. (2018). INDETERMINATE SPIKELET1 recruits histone deacetylase and a transcriptional repression complex to regulate rice salt tolerance. Plant physiology, 178(2), 824-837.
        Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., Chiang, S. F., & Su, C. L. (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18(2), 412-421. https://doi.org/10.1105/tpc.105.038943
     Chuck, G., Cigan, A. M., Saeteurn, K., & Hake, S. (2007). The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature genetics, 39(4), 544-549.
       Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res, 46(W1), W49-w54. https://doi.org/10.1093/nar/gky316
        De Paola, D., Cattonaro, F., Pignone, D., & Sonnante, G. (2012). The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis. BMC Genomics, 13, 41. https://doi.org/10.1186/1471-2164-13-41
      Dinh, T. T., Girke, T., Liu, X., Yant, L., Schmid, M., & Chen, X. (2012). The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element. Development, 139(11), 1978-1986. https://doi.org/10.1242/dev.077073
        Fang, L., & Wang, Y. (2021). MicroRNAs in Woody Plants. Front Plant Sci, 12, 686831. https://doi.org/10.3389/fpls.2021.686831
         Faostat. (2016). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/faostat/en/-data/QC.
         Fujii, H., Chiou, T. J., Lin, S. I., Aung, K., & Zhu, J. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol, 15(22), 2038-2043. https://doi.org/10.1016/j.cub.2005.10.016
        Goyal, V., Jhanghel, D., & Mehrotra, S. (2021). Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. Physiologia Plantarum, 171(4), 896-908.
        Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Guneri, E., Eraslan, F., & Guzelordu, T. (2005). Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.) (Einfluss einer Salicylsäure–Applikation auf die Induktion von Stresstoleranz sowie Nährstoffaufnahme von Mais [Zea mays L.]). Archives of agronomy and soil science, 51(6), 687-695.
        Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014, 701596. https://doi.org/10.1155/2014/701596
        Hamayun, M., Khan, S. A., Khan, A. L., Shin, J. H., Ahmad, B., Shin, D. H., & Lee, I. J. (2010). Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem, 58(12), 7226-7232. https://doi.org/10.1021/jf101221t
      Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C., Richter, J., Rubin, G. M., Blake, J. A., Bult, C., Dolan, M., Drabkin, H., Eppig, J. T., Hill, D. P., Ni, L., . . . White, R. (2004). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 32(Database issue), D258-261. https://doi.org/10.1093/nar/gkh036
     Hayat, S., Hasan, S. A., Yusuf, M., Hayat, Q., & Ahmad, A. (2010). Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany, 69(2), 105-112.
     Hussain, S. (2019). Climate change and agriculture. BoD–Books on Demand.
      Islam, W., Adnan, M., Huang, Z., Lu, G.-d., & Chen, H. Y. (2019). Small RNAs from seed to mature plant. Critical reviews in plant sciences, 38(2), 117-139.
      Islam, W., Islam, S. U., Qasim, M., & Wang, L. (2017). Host-Pathogen interactions modulated by small RNAs. RNA Biol, 14(7), 891-904. https://doi.org/10.1080/15476286.2017.1318009
       Islam, W., Qasim, M., Noman, A., Adnan, M., Tayyab, M., Farooq, T. H., Wei, H., & Wang, L. (2018). Plant microRNAs: Front line players against invading pathogens. Microb Pathog, 118, 9-17. https://doi.org/10.1016/j.micpath.2018.03.008
       Islam, W., Waheed, A., Naveed, H., & Zeng, F. (2022). MicroRNAs mediated plant responses to salt stress. Cells, 11(18), 2806.
      Jannesar, M., Seyedi, S. M., Moazzam Jazi, M., Niknam, V., Ebrahimzadeh, H., & Botanga, C. (2020). A genome-wideJJ identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Sci Rep, 10(1), 5585. https://doi.org/10.1038/s41598-020-62108-6
       Jannesar, M., Seyedi, S. M., Niknam, V., Ghadirzadeh Khorzoghi, E., & Ebrahimzadeh, H. (2022). Salicylic acid, as a positive regulator of isochorismate synthase, reduces the negative effect of salt stress on Pistacia vera L. by increasing photosynthetic pigments and inducing antioxidant activity. Journal of Plant Growth Regulation, 41(3), 1304-1315.
     Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot, 64(8), 2255-2268. https://doi.org/10.1093/jxb/ert085
      Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., & Chen, J. T. (2019). An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. Int J Mol Sci, 21(1). https://doi.org/10.3390/ijms21010148
       Kuo, H. F., & Chiou, T. J. (2011). The role of microRNAs in phosphorus deficiency signaling. Plant Physiol, 156(3), 1016-1024. https://doi.org/10.1104/pp.111.175265
         Li, B., Duan, H., Li, J., Deng, X. W., Yin, W., & Xia, X. (2013). Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol, 81(6), 525-539. https://doi.org/10.1007/s11103-013-0010-y
         Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and Biological Functions in Plants. Int J Mol Sci, 19(2). https://doi.org/10.3390/ijms19020335
          Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell, 26(2), 741-753. https://doi.org/10.1105/tpc.113.120972
         Liu, X., Liu, S., Zhang, J., Wu, Y., Wu, W., Zhang, Y., Liu, B., Tang, R., He, L., Li, R., & Jia, X. (2020). Optimization of reference genes for qRT-PCR analysis of microRNA expression under abiotic stress conditions in sweetpotato. Plant Physiol Biochem, 154, 379-386. https://doi.org/10.1016/j.plaphy.2020.06.016
       Lotfi, A. (2014). Study and comparing the expression pattern of microRNAs involved in response to salinity stress in pistachio plant (Pistacia vera L.). Ph.D. Thesis. National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
       Loutfy, N., El-Tayeb, M. A., Hassanen, A. M., Moustafa, M. F., Sakuma, Y., & Inouhe, M. (2012). Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). J Plant Res, 125(1), 173-184. https://doi.org/10.1007/s10265-011-0419-9
       Lu, W., Li, J., Liu, F., Gu, J., Guo, C., Xu, L., Zhang, H., & Xiao, K. (2011). Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets. Frontiers of Agriculture in China, 5, 413-422.
        Ma, X., Zheng, J., Zhang, X., Hu, Q., & Qian, R. (2017). Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System. Front Plant Sci, 8, 600. https://doi.org/10.3389/fpls.2017.00600
    Maazzam Jazi, M., Rajaei, S., & Seyedi, S. M. (2015). Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites. Physiol Mol Biol Plants, 21(4), 597-603. https://doi.org/10.1007/s12298-015-0319-x
      Moazzzam Jazi, M., Seyedi, S. M., Ebrahimie, E., Ebrahimi, M., De Moro, G., & Botanga, C. (2017). A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. BMC Genomics, 18(1), 627. https://doi.org/10.1186/s12864-017-3989-7
        Mou, G., Wang, K., Xu, D., & Zhou, G. (2013). Evaluation of three RT-qPCR-based miRNA detection methods using seven rice miRNAs. Biosci Biotechnol Biochem, 77(6), 1349-1353. https://doi.org/10.1271/bbb.130192
        Mustafa, G., Akhtar, M. S., & Abdullah, R. (2019). Global concern for salinity on various agro-ecosystems. Salt Stress, Microbes, and Plant Interactions: Causes and Solution: Volume 1, 1-19.
        Née, G., Wang, F., Châtel-Innocenti, G., Mhamdi, A., Juranville, E., Vanacker, H., Noctor, G., & Issakidis-Bourguet, E. (2023). Thioredoxins m regulate plastid glucose-6-phosphate dehydrogenase activity in Arabidopsis roots under salt stress. Front Plant Sci, 14, 1179112. https://doi.org/10.3389/fpls.2023.1179112
       Nefissi Ouertani, R., Arasappan, D., Abid, G., Ben Chikha, M., Jardak, R., Mahmoudi, H., Mejri, S., Ghorbel, A., Ruhlman, T. A., & Jansen, R. K. (2021). Transcriptomic Analysis of Salt-Stress-Responsive Genes in Barley Roots and Leaves. Int J Mol Sci, 22(15). https://doi.org/10.3390/ijms22158155
         Noman, A., Sanaullah, T., Khalid, N., Islam, W., Khan, S., Irshad, M. K., & Aqeel, M. (2019). Crosstalk between plant miRNA and heavy metal toxicity. Plant metallomics and functional omics: a system-wide perspective, 145-168.
     Pegler, J. L., Oultram, J. M. J., Grof, C. P. L., & Eamens, A. L. (2020). Molecular Manipulation of the miR399/PHO2 Expression Module Alters the Salt Stress Response of Arabidopsis thaliana. Plants (Basel), 10(1). https://doi.org/10.3390/plants10010073
      Peng, Z., Wang, Y., Geng, G., Yang, R., Yang, Z., Yang, C., Xu, R., Zhang, Q., Kakar, K. U., Li, Z., & Zhang, S. (2021). Comparative Analysis of Physiological, Enzymatic, and Transcriptomic Responses Revealed Mechanisms of Salt Tolerance and Recovery in Tritipyrum. Front Plant Sci, 12, 800081. https://doi.org/10.3389/fpls.2021.800081
    Perron, M. P., & Provost, P. (2008). Protein interactions and complexes in human microRNA biogenesis and function. Front Biosci, 13, 2537-2547. https://doi.org/10.2741/2865
     Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45
     Qi, H., Liang, K., Ke, Y., Wang, J., Yang, P., Yu, F., & Qiu, F. (2023). Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. Int J Mol Sci, 24(6). https://doi.org/10.3390/ijms24065416
     Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nat. Sci, 17(1), 34-40.
  Sun, G., Stewart, C. N., Jr., Xiao, P., & Zhang, B. (2012). MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One, 7(3), e32017. https://doi.org/10.1371/journal.pone.0032017
          Sun, X., Xu, L., Wang, Y., Yu, R., Zhu, X., Luo, X., Gong, Y., Wang, R., Limera, C., Zhang, K., & Liu, L. (2015). Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics, 16(1), 197. https://doi.org/10.1186/s12864-015-1416-5
           Iian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., & Su, Z. (2017). agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res, 45(W1), W122-w129. https://doi.org/10.1093/nar/gkx382
           
TÜFEKÇİ, E. D., & İNAL, B. (2020). The Effects of Salicylic Acid Applications on miRNA Expression in Wheat Varieties Under Drought Stress. Avrupa Bilim ve Teknoloji Dergisi(19), 189-195.
        Tyagi, S., Sharma, S., Ganie, S. A., Tahir, M., Mir, R. R., & Pandey, R. (2019). Plant microRNAs: biogenesis, gene silencing, web-based analysis tools and their use as molecular markers. 3 Biotech, 9(11), 413. https://doi.org/10.1007/s13205-019-1942-y
        Wang, J., Mei, J., & Ren, G. (2019). Plant microRNAs: Biogenesis, Homeostasis, and Degradation. Front Plant Sci, 10, 360. https://doi.org/10.3389/fpls.2019.00360
          Wang, R., Fang, Y. N., Wu, X. M., Qing, M., Li, C. C., Xie, K. D., Deng, X. X., & Guo, W. W. (2020). The miR399-CsUBC24 Module Regulates Reproductive Development and Male Fertility in Citrus. Plant Physiol, 183(4), 1681-1695. https://doi.org/10.1104/pp.20.00129
       Xie, F., Wang, Q., Sun, R., & Zhang, B. (2015). Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot, 66(3), 789-804. https://doi.org/10.1093/jxb/eru437
         Zhang, F., Yang, J., Zhang, N., Wu, J., & Si, H. (2022). Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Front Plant Sci, 13, 919243. https://doi.org/10.3389/fpls.2022.919243
        Zhuang, Y., Zhou, X. H., & Liu, J. (2014). Conserved miRNAs and their response to salt stress in wild eggplant Solanum linnaeanum roots. Int J Mol Sci, 15(1), 839-849. https://doi.org/10.3390/ijms15010839