Aung, K., Lin, S. I., Wu, C. C., Huang, Y. T., Su, C. L., & Chiou, T. J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol, 141(3), 1000-1011. https://doi.org/10.1104/pp.106.078063
Bari, R., Datt Pant, B., Stitt, M., & Scheible, W. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 141(3), 988-999. https://doi.org/10.1104/pp.106.079707
Çakır Aydemir, B., Yüksel Özmen, C., Kibar, U., Mutaf, F., Büyük, P. B., Bakır, M., & Ergül, A. (2020). Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS One, 15(7), e0236424. https://doi.org/10.1371/journal.pone.0236424
Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., & Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 33(20), e179. https://doi.org/10.1093/nar/gni178
Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signal Behav, 4(6), 493-496. https://doi.org/10.4161/psb.4.6.8392
Cheng, X., He, Q., Tang, S., Wang, H., Zhang, X., Lv, M., Liu, H., Gao, Q., Zhou, Y., Wang, Q., Man, X., Liu, J., Huang, R., Wang, H., Chen, T., & Liu, J. (2021). The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. New Phytol, 230(3), 1017-1033. https://doi.org/10.1111/nph.17211
Cheng, X., Zhang, S., Tao, W., Zhang, X., Liu, J., Sun, J., Zhang, H., Pu, L., Huang, R., & Chen, T. (2018). INDETERMINATE SPIKELET1 recruits histone deacetylase and a transcriptional repression complex to regulate rice salt tolerance. Plant physiology, 178(2), 824-837.
Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., Chiang, S. F., & Su, C. L. (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18(2), 412-421. https://doi.org/10.1105/tpc.105.038943
Chuck, G., Cigan, A. M., Saeteurn, K., & Hake, S. (2007). The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature genetics, 39(4), 544-549.
Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res, 46(W1), W49-w54. https://doi.org/10.1093/nar/gky316
De Paola, D., Cattonaro, F., Pignone, D., & Sonnante, G. (2012). The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis. BMC Genomics, 13, 41. https://doi.org/10.1186/1471-2164-13-41
Dinh, T. T., Girke, T., Liu, X., Yant, L., Schmid, M., & Chen, X. (2012). The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element. Development, 139(11), 1978-1986. https://doi.org/10.1242/dev.077073
Fujii, H., Chiou, T. J., Lin, S. I., Aung, K., & Zhu, J. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol, 15(22), 2038-2043. https://doi.org/10.1016/j.cub.2005.10.016
Goyal, V., Jhanghel, D., & Mehrotra, S. (2021). Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. Physiologia Plantarum, 171(4), 896-908.
Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Guneri, E., Eraslan, F., & Guzelordu, T. (2005). Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.) (Einfluss einer Salicylsäure–Applikation auf die Induktion von Stresstoleranz sowie Nährstoffaufnahme von Mais [Zea mays L.]). Archives of agronomy and soil science, 51(6), 687-695.
Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014, 701596. https://doi.org/10.1155/2014/701596
Hamayun, M., Khan, S. A., Khan, A. L., Shin, J. H., Ahmad, B., Shin, D. H., & Lee, I. J. (2010). Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem, 58(12), 7226-7232. https://doi.org/10.1021/jf101221t
Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C., Richter, J., Rubin, G. M., Blake, J. A., Bult, C., Dolan, M., Drabkin, H., Eppig, J. T., Hill, D. P., Ni, L., . . . White, R. (2004). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 32(Database issue), D258-261. https://doi.org/10.1093/nar/gkh036
Hayat, S., Hasan, S. A., Yusuf, M., Hayat, Q., & Ahmad, A. (2010). Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany, 69(2), 105-112.
Hussain, S. (2019). Climate change and agriculture. BoD–Books on Demand.
Islam, W., Adnan, M., Huang, Z., Lu, G.-d., & Chen, H. Y. (2019). Small RNAs from seed to mature plant. Critical reviews in plant sciences, 38(2), 117-139.
Islam, W., Qasim, M., Noman, A., Adnan, M., Tayyab, M., Farooq, T. H., Wei, H., & Wang, L. (2018). Plant microRNAs: Front line players against invading pathogens. Microb Pathog, 118, 9-17. https://doi.org/10.1016/j.micpath.2018.03.008
Islam, W., Waheed, A., Naveed, H., & Zeng, F. (2022). MicroRNAs mediated plant responses to salt stress. Cells, 11(18), 2806.
Jannesar, M., Seyedi, S. M., Moazzam Jazi, M., Niknam, V., Ebrahimzadeh, H., & Botanga, C. (2020). A genome-wideJJ identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Sci Rep, 10(1), 5585. https://doi.org/10.1038/s41598-020-62108-6
Jannesar, M., Seyedi, S. M., Niknam, V., Ghadirzadeh Khorzoghi, E., & Ebrahimzadeh, H. (2022). Salicylic acid, as a positive regulator of isochorismate synthase, reduces the negative effect of salt stress on Pistacia vera L. by increasing photosynthetic pigments and inducing antioxidant activity. Journal of Plant Growth Regulation, 41(3), 1304-1315.
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot, 64(8), 2255-2268. https://doi.org/10.1093/jxb/ert085
Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., & Chen, J. T. (2019). An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. Int J Mol Sci, 21(1). https://doi.org/10.3390/ijms21010148
Li, B., Duan, H., Li, J., Deng, X. W., Yin, W., & Xia, X. (2013). Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol, 81(6), 525-539. https://doi.org/10.1007/s11103-013-0010-y
Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell, 26(2), 741-753. https://doi.org/10.1105/tpc.113.120972
Liu, X., Liu, S., Zhang, J., Wu, Y., Wu, W., Zhang, Y., Liu, B., Tang, R., He, L., Li, R., & Jia, X. (2020). Optimization of reference genes for qRT-PCR analysis of microRNA expression under abiotic stress conditions in sweetpotato. Plant Physiol Biochem, 154, 379-386. https://doi.org/10.1016/j.plaphy.2020.06.016
Lotfi, A. (2014). Study and comparing the expression pattern of microRNAs involved in response to salinity stress in pistachio plant (Pistacia vera L.). Ph.D. Thesis. National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
Loutfy, N., El-Tayeb, M. A., Hassanen, A. M., Moustafa, M. F., Sakuma, Y., & Inouhe, M. (2012). Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). J Plant Res, 125(1), 173-184. https://doi.org/10.1007/s10265-011-0419-9
Lu, W., Li, J., Liu, F., Gu, J., Guo, C., Xu, L., Zhang, H., & Xiao, K. (2011). Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets. Frontiers of Agriculture in China, 5, 413-422.
Ma, X., Zheng, J., Zhang, X., Hu, Q., & Qian, R. (2017). Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System. Front Plant Sci, 8, 600. https://doi.org/10.3389/fpls.2017.00600
Maazzam Jazi, M., Rajaei, S., & Seyedi, S. M. (2015). Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites. Physiol Mol Biol Plants, 21(4), 597-603. https://doi.org/10.1007/s12298-015-0319-x
Moazzzam Jazi, M., Seyedi, S. M., Ebrahimie, E., Ebrahimi, M., De Moro, G., & Botanga, C. (2017). A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. BMC Genomics, 18(1), 627. https://doi.org/10.1186/s12864-017-3989-7
Mou, G., Wang, K., Xu, D., & Zhou, G. (2013). Evaluation of three RT-qPCR-based miRNA detection methods using seven rice miRNAs. Biosci Biotechnol Biochem, 77(6), 1349-1353. https://doi.org/10.1271/bbb.130192
Mustafa, G., Akhtar, M. S., & Abdullah, R. (2019). Global concern for salinity on various agro-ecosystems. Salt Stress, Microbes, and Plant Interactions: Causes and Solution: Volume 1, 1-19.
Née, G., Wang, F., Châtel-Innocenti, G., Mhamdi, A., Juranville, E., Vanacker, H., Noctor, G., & Issakidis-Bourguet, E. (2023). Thioredoxins m regulate plastid glucose-6-phosphate dehydrogenase activity in Arabidopsis roots under salt stress. Front Plant Sci, 14, 1179112. https://doi.org/10.3389/fpls.2023.1179112
Nefissi Ouertani, R., Arasappan, D., Abid, G., Ben Chikha, M., Jardak, R., Mahmoudi, H., Mejri, S., Ghorbel, A., Ruhlman, T. A., & Jansen, R. K. (2021). Transcriptomic Analysis of Salt-Stress-Responsive Genes in Barley Roots and Leaves. Int J Mol Sci, 22(15). https://doi.org/10.3390/ijms22158155
Noman, A., Sanaullah, T., Khalid, N., Islam, W., Khan, S., Irshad, M. K., & Aqeel, M. (2019). Crosstalk between plant miRNA and heavy metal toxicity. Plant metallomics and functional omics: a system-wide perspective, 145-168.
Pegler, J. L., Oultram, J. M. J., Grof, C. P. L., & Eamens, A. L. (2020). Molecular Manipulation of the miR399/PHO2 Expression Module Alters the Salt Stress Response of Arabidopsis thaliana. Plants (Basel), 10(1). https://doi.org/10.3390/plants10010073
Peng, Z., Wang, Y., Geng, G., Yang, R., Yang, Z., Yang, C., Xu, R., Zhang, Q., Kakar, K. U., Li, Z., & Zhang, S. (2021). Comparative Analysis of Physiological, Enzymatic, and Transcriptomic Responses Revealed Mechanisms of Salt Tolerance and Recovery in Tritipyrum. Front Plant Sci, 12, 800081. https://doi.org/10.3389/fpls.2021.800081
Perron, M. P., & Provost, P. (2008). Protein interactions and complexes in human microRNA biogenesis and function. Front Biosci, 13, 2537-2547. https://doi.org/10.2741/2865
Qi, H., Liang, K., Ke, Y., Wang, J., Yang, P., Yu, F., & Qiu, F. (2023). Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. Int J Mol Sci, 24(6). https://doi.org/10.3390/ijms24065416
Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nat. Sci, 17(1), 34-40.
Sun, G., Stewart, C. N., Jr., Xiao, P., & Zhang, B. (2012). MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One, 7(3), e32017. https://doi.org/10.1371/journal.pone.0032017
Sun, X., Xu, L., Wang, Y., Yu, R., Zhu, X., Luo, X., Gong, Y., Wang, R., Limera, C., Zhang, K., & Liu, L. (2015). Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics, 16(1), 197. https://doi.org/10.1186/s12864-015-1416-5
Iian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., & Su, Z. (2017). agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res, 45(W1), W122-w129. https://doi.org/10.1093/nar/gkx382
TÜFEKÇİ, E. D., & İNAL, B. (2020). The Effects of Salicylic Acid Applications on miRNA Expression in Wheat Varieties Under Drought Stress. Avrupa Bilim ve Teknoloji Dergisi(19), 189-195.
Tyagi, S., Sharma, S., Ganie, S. A., Tahir, M., Mir, R. R., & Pandey, R. (2019). Plant microRNAs: biogenesis, gene silencing, web-based analysis tools and their use as molecular markers. 3 Biotech, 9(11), 413. https://doi.org/10.1007/s13205-019-1942-y
Wang, R., Fang, Y. N., Wu, X. M., Qing, M., Li, C. C., Xie, K. D., Deng, X. X., & Guo, W. W. (2020). The miR399-CsUBC24 Module Regulates Reproductive Development and Male Fertility in Citrus. Plant Physiol, 183(4), 1681-1695. https://doi.org/10.1104/pp.20.00129
Xie, F., Wang, Q., Sun, R., & Zhang, B. (2015). Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot, 66(3), 789-804. https://doi.org/10.1093/jxb/eru437
Zhang, F., Yang, J., Zhang, N., Wu, J., & Si, H. (2022). Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Front Plant Sci, 13, 919243. https://doi.org/10.3389/fpls.2022.919243
Zhuang, Y., Zhou, X. H., & Liu, J. (2014). Conserved miRNAs and their response to salt stress in wild eggplant Solanum linnaeanum roots. Int J Mol Sci, 15(1), 839-849. https://doi.org/10.3390/ijms15010839