[1] Filgueiras, L., Silva, R., Almeida, I., Vidal, M., Baldani, J.I. and Meneses, C.H.S.G. (2020). Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant and Soil, 451, 57-73. DOI:10.1007/s11104-019-04163-1.
[2] Hamidi, A., Asgharzadeh, A., Ahmadi, A., Akbari Vala, S., Choukan, R. (2021). Effect of Plant Growth Promoting Bacteria (PGPB) and Mycorrhizae Fungi on three Maize (Zea mays L.) Hybrids Some Seed Germination and Seedling Vigour Trait. journal of agricultural knowledge and sustainable production, 13, 167-149. (In Persian).
[3] Chang, C., Yang, M., Wen, H. and Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Food Drug Anal, 10, 178-182.
[4] Cocking, E. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria, Centre for Crop Nitrogen Fixation. University of Nottingham, 252, 169–175.
[5] Francine, P., Joko, P., Barry, R., Jeremy, W. and Charles, H. (2007). Infection process and the interaction of rice roots with rhizobia. Journal of Experimental Botany, 58, 3343–3350. https://doi.org/10.1093/jxb/erm181.
[6] EKhawas, H. and Adachi, K. (2010). Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertil Soils, 28, 377-381. DOI:10.1007/s003740050507
[7] Dazy, M., Jung, V., Ferard, J. and Masfaraud, J. ( 2008). Ecological recovery of vegetation on a coke-factory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere, 74, 57-63. doi: 10.1016/j.chemosphere.2008.09.014.
[8] Bashan, Y. and de-Bashan, L. (2010). How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. Northwestern Center for Biological Research (CIBNOR), 108, 78-122. DOI:10.1016/S0065-2113(10)08002-8.
[9] Kannan, T. and Ponmurugan, P. (2010). Response of Paddy (Oryza Sativa L.) Varieties to Azospirillum Brasilense Inoculation. Journal of Phytology, 6, 8-13.
[10] Dias, B., Osorio, F., Kelsey, G., Andreia, B., Rafael, F., Lourdes, M., Augusto, R., Caballero, M., Enilson, L. and Adriana, G. (2014). Rhizobia Enhance Growth in Rice Plants Under Flooding Conditions. American-Eurasian Journal Agriculture and Environment, 14, 707-718. DOI:10.5829/idosi.aejaes.2014.14.08.12377.
[11] White, J.F., Kingsley, K.L., Verma, S.K. and Kowalski, K.P. (2018). Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms, 6, 95-98. doi: 10.3390/microorganisms6030095.
[12] Alduy, A., Kiyo, N., Tadashi, S., Hisa, S., Bin, Y., Toru, H., Tsuyoshi, I., Hisayuki, M. and Kiwamu, M. (2013). Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species. Applied and Environmental Microbiology, 67, 5285-5293. doi: 10.1128/AEM.67.11.5285-5293.2001.
[13] Rodrigues, E., Rodrigues, L., Martinez, D., Vera, B., Santos, T., Segundo, U. and Veronica, M. (2017). Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil, 302, 249-261. DOI:10.1007/s11104-007-9476-1.
[15] Kumar, V., Singh, G., Chauhan, R.S. and Sinam, G. (2020). Role of plant growth–promoting rhizobacteria in mitigation of heavy metals toxicity to Oryza sativa L. In Emerging Technologies in Environmental Bioremediation (pp. 373-390). Elsevier.
[16] Cosgrove, D. (2016). Catalysts of plant cell wall loosening [version 1; referees: 2 approved]. Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, 16, 119-180. doi: 10.12688/f1000research.7180.1.
[17] Kathryn, J., Kingsley, S. and Verma, K. (2018). Rhizophagy Cycle: An Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes. U.S. Geological Survey, Great Lakes Science Center, 12, 81-96.
[18] Doli, P. and Vrinda, T. (2004). Studies on cell wall loosening enzymes in hor mone treated internodes of Merremia emarginata. Department of Biosciences, Saurashtra University, 26, 231-238. https://doi.org/10.1007/s11738-004-0012-0
[19] Yoshida, S. and Coronel, V. (1976). Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Science and Plant Nutrition, 22, 207-211.
[20] Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. Handbook of phycological methods. Physiological and biochemical methods, 95.
[21] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254.
[22] Olsen, S. R. and Sommers, L. E. (1982). Phosphorus. pp. 403-430. In: A. L. Page, et al. (eds.) Methods of soil analysis: Part 2. Chemical and microbiological properties. Agron. Mongr. 9. 2nd ed. ASA and SSSA, Madison, WI.
[23] Sergiev, I., Alexieva, V. and Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Computer Rend Academic Bulgarian Science, 51, 121-124.
[24] Fabricio, C., Bottini, R., Gernot, S. and Patricia, P. (2001). Azospirillum brasilense and Azospirillum lipoferum Hydrolyze Conjugates of GA20 and Metabolize the Resultant Aglycones to GA1 in Seedlings of Rice Dwarf Mutants. American Society of Plant Biologists, 125, 2053-2058. doi: 10.1104/pp.125.4.2053.
[25] Errington, J., Katarzyna, M., Yoshikazu, K. and Ling, J. (2016). L-form bacteria, chronic diseases and the origins of life. Philosophical Transactions of The Royal Society Biological Sciences, 32, 347-354. doi: 10.1098/rstb.2015.0494.
[26] Guixiang, P., Wu, Z., Huifen, L., Hongwei, X., Weihao, L. and Zhiyuan, T. (2019). Enterobacter oryzae sp a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. International Journal of Systematic and Evolutionary Microbiology, 59, 1650-1655. doi: 10.1099/ijs.0.65484-0.
[27] Compant, S., Abdul, S., Faist, H. and Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004.
[28] Zhang, Q., Gong, M., Xu, X., Li, H. and Deng, W. (2022). Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells, 11, 2761. https://doi.org/10.3390/cells11172761.
[29] Jeandet, P., Formela-Luboińska, M., Labudda, M. and Morkunas, I. (2022). The role of sugars in plant responses to stress and their regulatory function during development. International Journal of Molecular Sciences, 23, 5161. doi: 10.3390/ijms23095161.
[30] Ralipo, K. and Must, T. (2009). Content of total carotenoids in Calendula officinalis L. from different countries cultivated in Estonia. Natural Product Communications, 4, 35-38. DOI:10.1177/1934578X0900400109.
[31] Carole, S., Didier, B. and Claudine, F. (2013). Biological nitrogen fixation in non-legume plants, Annals of Botany, 111, 743-767. https://doi.org/10.1093/aob/mct048.
[32] Mildesgeren, N., Bhattacharya, J. and Rai, B. (2002). Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytologist, 156, 517–525. doi: 10.1046/j.1469-8137.2002.00534.
[33] Bellincampi, D., Felice, C. and Vincenzo, L. (2014). Plant cell wall dynamics and wall related susceptibility in plant–pathogen interactions. Frontiers in Plant Science, 5, 1-8. https://doi.org/10.3389/fpls.2014.00228.
[34] Caiyan, C. and Hongyan, Z. (2013). Are common symbiosis genes required for endophytic rice-rhizobial interactions. Chinese Academy of Sciences, 8, 531-533. doi: 10.4161/psb.25453.
[35] Aravind, P. and Prasad, M. (2005). Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum.L (a free floating aquatic macrophyte) together with exogenous supplements of amino- and organic acids. hemosphere, 61, 1720-1733. https://doi.org/10.1016/j.chemosphere.2005.03.088.
[37] Hironobu, M. and Hlsao, M. (2008). Endophytic Bacteria in the Rice Plant. Japanese Society of Microbial Ecology, 23, 109-117. doi: 10.1264/jsme2.23.109.
[38] Deboy, R., Emmanuel, M., Derrick, F., Louise, T., Hoda, K., Joanne, E.,Yasmin, M., Kisha, W., Bernard, H., Harry, G., and Karen, N. (2008). Insights into Plant Cell Wall Degradation from the Genome Sequence of the Soil Bacterium Cellvibrio japonicas. American Society for Microbiology, 190, 5455-5463. doi: 10.1128/JB.01701-07.
[39] Hung, S. and Lin, C. (2005). Hydrogen peroxide functions as a stress signal in plants. Botanical Studies Bull Academic journal, 46, 1-10.
[40] Akihito, O., Takafumi, I., Akiko, K., Wataru, H. and Kousaku, M. (2007). Plant Cell Wall Degradation by Saprophytic Bacillus subtilis Strains: Gene Clusters Responsible for Rhamnogalacturonan Depolymerization. Applied and Environmental Microbiology, 73, 3803–3813. doi: 10.1128/AEM.00147-07