نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری، گروه زیست‌شناسی- فیزیولوژی گیاهی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران

2 استاد، گروه زیست‌شناسی- فیزیولوژی گیاهی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران

3 استاد، گروه بیولوژی گیاهی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران gangia@modares.ac.ir

4 استادیار، گروه تحقیقات خاک و آب، مرکز تحقیقات کشاورزی و منابع طبیعی گلستان، گرگان، ایران

10.22051/jab.2023.42839.1542

چکیده

مقدمه: آزوسپریلوم یکی از انواع میکرورارگانیسم‌های تثبیت‌کننده نیتروژن مولکولی است که در همیاری با ریشه گیاهان تیره غلات و گرامینه‌های دیگر، رشد و نمو آن‌ها را تقویت می‌کند. هدف از تحقیق حاضر بررسی اثر باکتری‌ آزوسپریلوم ایراکنز (Azosprillum irakense) به همراه تیمار هورمون‌های اکسین (IAA) و یا جیبرلین (GA3) بر برخی شاخص‌های رشد و بیوشیمیایی در گیاهچه‌های برنج رقم هاشمی (cv.hashemi Oryza sative) و مشاهده روند کلونیزاسیون باکتری در سلول‌های ریشه است. روش‌ها: به این منظور ریشه گیاهچه‌های 21 روزه برنج پس از تلقیح با آزوسپریلوم با غلظت‌های مختلف) 0, 100, 200 (ppm IAA و GA3 به تنهایی و یا در ترکیب با یکدیگر (ppm IAA 200 ppm GA3+200) به مدت 4 هفته تیمار شدند. نتایج و بحث: روند کلونیزاسیون باکتری شامل تشکیل زیست لایه، اضمحلال دیواره، ورود باکتری به داخل لایه‌ی پوست ریشه و تشکیل کلنی‌های منفرد و پراکنده است. وزن خشک و تر ریشه و اندام هوایی، وزن خشک و تر کل و سرعت رشد نسبی در نمونه‌های تلقیح‌شده که با هورمون‌ها نیز تیمار شده بودند، افزایش معنی‌داری یافت که این افزایش بخصوص در تیمار ترکیبی هورمون اکسین و جیبرلین قابل توجه بوده است. هم‌چنین نتایج نشان داد که محتوای پراکسید هیدروژن در ریشه، پروتئین و قند محلول و فسفر در اندام هوایی و ریشه گیاهچه‌های تیمارشده به طور معنی‌داری در مقایسه با شاهد افزایش یافته است. نتیجه‌گیری: باتوجه به نتایج حاضر، کاربرد باکتری آزوسپریلوم ایراکنز به همراه غلظت ترکیبی هورمون‌ها برای افزایش عملکرد و رشد گیاهچه‌های برنج موثر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Endophytic colonization of rice root with Azospirillum irakense and its effect on some growth and biochemical parameters

نویسندگان [English]

  • Seyedeh Zeynab Sharifsadat 1
  • Mahnaz Aghdasi 2
  • Faezeh Ghanati 3
  • Mohammad Hossein Arzanesh 4

1 PhD student, Department of Plant Biology-Physiology, Faculty of Science, Golestan University, Gorgan, Ira

2 Professor, Department of Biology-Plant Physiology, Faculty of Science, Golestan University, Gorgan, Iran

3 Professor, Department of Plant Biology, Faculty of Life Sciences, Tarbiat Modares University, Tehran, Iran

4 Assistant Professor, Soil and Water Research Department, Golestan Agriculture and Natural Resources Research Center, Gorgan, Iran

چکیده [English]

Introduction: Azospirillum is the nitrogen fixing microorganisms which improves the growth and development of cereals and other gramineae plants in association with their roots. The goal of present study was to investigate the effect of Azospirillum irakense inoculation in combinations with or without auxin (IAA) and/or gibberellin (GA3) treatment on the growth and biochemical parameters of rice (Oryza sative cv. hashemi) seedlings, as well as observing the bacterial colonization process in the root cells. Methods: The roots of 21-days-old rice seedlings were treated with different concentrations (0, 100, 200 ppm) of IAA and/or GA3 for 4 weeks after inoculation with Azosprillum. Result & discussion: The process of bacterial colonization involves the formation of a biofilm, disintegration of the wall, entry of bacteria into root parenchymal cells and development of isolated and scattered colonies. Dry and fresh weight of roots and aerial parts, total dry and fresh weight, and relative growth rate was significantly increased after inoculation with bacteria. The highest level of these parameters was obtained in the seedlings which inoculated with bacteria in combinations with IAA plus GA3 treatment. Meanwhile, the amount of hydrogen peroxide in the roots, soluble protein, soluble sugar and phosphorus was significantly increased in both roots and aerial parts of seedlings after inoculation with bacteria in combinations with IAA plus GA3 treatment, compared to the control. Conclusion: According to the current results, the application of Azospirillum irakense in combinations with IAA and GA3 treatment is a powerful strategy to improve rice seedlings growth

کلیدواژه‌ها [English]

  • Azospirillum
  • Auxin
  • Destruction of cell wall
  • Gibberellin
  • Growth indicators
  • Rice
 [1] Filgueiras, L., Silva, R., Almeida, I., Vidal, M., Baldani, J.I. and Meneses, C.H.S.G. (2020). Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant and Soil, 451, 57-73. DOI:10.1007/s11104-019-04163-1.
[2] Hamidi, A., Asgharzadeh, A., Ahmadi, A., Akbari Vala, S., Choukan, R. (2021). Effect of Plant Growth Promoting Bacteria (PGPB) and Mycorrhizae Fungi on three Maize (Zea mays L.) Hybrids Some Seed Germination and Seedling Vigour Trait. journal of agricultural knowledge and sustainable production, 13, 167-149. (In Persian).
 [3] Chang, C., Yang, M., Wen, H. and Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Food Drug Anal, 10, 178-182.
 [4] Cocking, E. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria, Centre for Crop Nitrogen Fixation. University of Nottingham, 252, 169–175.
[5] Francine, P., Joko, P., Barry, R., Jeremy, W. and Charles, H. (2007). Infection process and the interaction of rice roots with rhizobia. Journal of Experimental Botany, 58, 3343–3350. https://doi.org/10.1093/jxb/erm181.
[6] EKhawas, H. and Adachi, K. (2010). Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertil Soils, 28, 377-381. DOI:10.1007/s003740050507
[7] Dazy, M., Jung, V., Ferard, J. and Masfaraud, J. ( 2008). Ecological recovery of vegetation on a coke-factory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere, 74, 57-63. doi: 10.1016/j.chemosphere.2008.09.014.
 [8] Bashan, Y. and de-Bashan, L. (2010). How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. Northwestern Center for Biological Research (CIBNOR), 108, 78-122. DOI:10.1016/S0065-2113(10)08002-8.
[9] Kannan, T. and Ponmurugan, P. (2010). Response of Paddy (Oryza Sativa L.) Varieties to Azospirillum Brasilense Inoculation. Journal of Phytology, 6, 8-13.
 [10] Dias, B., Osorio, F., Kelsey, G., Andreia, B., Rafael, F., Lourdes, M., Augusto, R., Caballero, M., Enilson, L. and Adriana, G. (2014).  Rhizobia Enhance Growth in Rice Plants Under Flooding Conditions. American-Eurasian Journal  Agriculture and Environment, 14, 707-718. DOI:10.5829/idosi.aejaes.2014.14.08.12377.
[11] White, J.F., Kingsley, K.L., Verma, S.K. and Kowalski, K.P. (2018). Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms, 6, 95-98. doi: 10.3390/microorganisms6030095.
[12] Alduy, A., Kiyo, N., Tadashi, S., Hisa, S., Bin, Y., Toru, H., Tsuyoshi, I., Hisayuki, M. and Kiwamu, M. (2013). Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species. Applied and Environmental Microbiology, 67, 5285-5293. doi: 10.1128/AEM.67.11.5285-5293.2001.
 [13] Rodrigues, E., Rodrigues, L., Martinez, D., Vera, B., Santos, T., Segundo, U. and Veronica, M. (2017). Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil, 302, 249-261. DOI:10.1007/s11104-007-9476-1.
[14] Nilsson, M., Bhattacharya, J., Rai, A.N. and Bergman, B. (2002). Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytologist, 156, 517-525.  https://doi.org/10.1046/j.1469- 137.2002.00534.x.
[15] Kumar, V., Singh, G., Chauhan, R.S. and Sinam, G. (2020). Role of plant growth–promoting rhizobacteria in mitigation of heavy metals toxicity to Oryza sativa L. In Emerging Technologies in Environmental Bioremediation (pp. 373-390). Elsevier.
[16] Cosgrove, D. (2016). Catalysts of plant cell wall loosening [version 1; referees: 2 approved]. Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, 16, 119-180.  doi: 10.12688/f1000research.7180.1.
[17] Kathryn, J., Kingsley, S. and Verma,  K. (2018). Rhizophagy Cycle: An Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes. U.S. Geological Survey, Great Lakes Science Center, 12, 81-96.
[18] Doli, P. and Vrinda, T. (2004). Studies on cell wall loosening enzymes in hor mone treated internodes of Merremia emarginata. Department of Biosciences, Saurashtra University, 26, 231-238. https://doi.org/10.1007/s11738-004-0012-0
[19] Yoshida, S. and Coronel, V. (1976). Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Science and Plant Nutrition, 22, 207-211.
[20] Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. Handbook of phycological methods. Physiological and biochemical methods, 95.
 [21] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254.
[22] Olsen, S. R. and Sommers, L. E. (1982). Phosphorus. pp. 403-430. In: A. L. Page, et al. (eds.) Methods of soil analysis: Part 2. Chemical and microbiological properties. Agron. Mongr. 9. 2nd ed. ASA and SSSA, Madison, WI.
  [23] Sergiev, I., Alexieva, V. and Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Computer Rend Academic Bulgarian Science, 51, 121-124.
[24] Fabricio, C., Bottini, R., Gernot, S. and Patricia, P. (2001). Azospirillum brasilense and Azospirillum lipoferum Hydrolyze Conjugates of GA20 and Metabolize the Resultant Aglycones to GA1 in Seedlings of Rice Dwarf Mutants. American Society of Plant Biologists, 125, 2053-2058. doi: 10.1104/pp.125.4.2053.
[25] Errington, J., Katarzyna, M., Yoshikazu, K. and Ling, J. (2016). L-form bacteria, chronic diseases and the origins of life. Philosophical Transactions of The Royal Society Biological Sciences, 32, 347-354. doi: 10.1098/rstb.2015.0494.
[26] Guixiang, P., Wu, Z., Huifen, L., Hongwei, X., Weihao, L. and Zhiyuan, T. (2019). Enterobacter oryzae sp a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. International Journal of Systematic and Evolutionary Microbiology, 59, 1650-1655. doi: 10.1099/ijs.0.65484-0.
[27] Compant, S., Abdul, S., Faist, H. and Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004.
[28] Zhang, Q., Gong, M., Xu, X., Li, H. and Deng, W. (2022). Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells, 11, 2761.  https://doi.org/10.3390/cells11172761.
 [29] Jeandet, P., Formela-Luboińska, M., Labudda, M. and Morkunas, I. (2022). The role of sugars in plant responses to stress and their regulatory function during development. International Journal of Molecular Sciences, 23, 5161. doi: 10.3390/ijms23095161.
 [30] Ralipo, K. and Must, T. (2009). Content of total carotenoids in Calendula officinalis L. from different countries cultivated in Estonia. Natural Product Communications, 4, 35-38. DOI:10.1177/1934578X0900400109.
[31] Carole, S., Didier, B. and Claudine, F. (2013). Biological nitrogen fixation in non-legume plants, Annals of Botany, 111, 743-767. https://doi.org/10.1093/aob/mct048.
 [32] Mildesgeren, N., Bhattacharya, J. and Rai, B. (2002). Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytologist, 156, 517–525. doi: 10.1046/j.1469-8137.2002.00534.
[33] Bellincampi, D., Felice, C. and Vincenzo, L. (2014). Plant cell wall dynamics and wall related susceptibility in plant–pathogen interactions. Frontiers in Plant Science, 5, 1-8. https://doi.org/10.3389/fpls.2014.00228.
[34] Caiyan, C. and Hongyan, Z. (2013). Are common symbiosis genes required for endophytic rice-rhizobial interactions. Chinese Academy of Sciences, 8, 531-533. doi: 10.4161/psb.25453.
[35] Aravind, P. and Prasad, M. (2005). Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum.L (a free floating aquatic macrophyte) together with exogenous supplements of amino- and organic acids. hemosphere, 61, 1720-1733. https://doi.org/10.1016/j.chemosphere.2005.03.088.
[36] Keg, F., sky, M., Jonatan, F.  and Willats, W. (2014). The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 95-112. https://doi.org/10.3389/fpls.2014.00178.
[37] Hironobu, M. and Hlsao, M. (2008). Endophytic Bacteria in the Rice Plant. Japanese Society of Microbial Ecology, 23, 109-117. doi: 10.1264/jsme2.23.109.
[38] Deboy, R., Emmanuel, M., Derrick, F., Louise, T., Hoda, K., Joanne, E.,Yasmin, M., Kisha, W., Bernard, H., Harry, G., and Karen, N. (2008). Insights into Plant Cell Wall Degradation from the Genome Sequence of the Soil Bacterium Cellvibrio japonicas. American Society for Microbiology, 190, 5455-5463. doi: 10.1128/JB.01701-07.
 [39] Hung, S. and Lin, C. (2005). Hydrogen peroxide functions as a stress signal in plants. Botanical Studies Bull Academic journal, 46, 1-10.
[40] Akihito, O., Takafumi, I., Akiko, K., Wataru, H. and Kousaku, M. (2007). Plant Cell Wall Degradation by Saprophytic Bacillus subtilis Strains: Gene Clusters Responsible for Rhamnogalacturonan Depolymerization. Applied and Environmental Microbiology, 73, 3803–3813.  doi: 10.1128/AEM.00147-07