نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیارمرکز تحقیقات کشاورزی و منابع طبیعی سازمان آموزش و ترویج(AREEO)، سمنان

2 استادیار پردیس فرزانگان، دانشگاه سمنان، ایران.

10.22051/jab.2024.44561.1581

چکیده

گونه نپتا گچی (Nepeta eremokosmos Rech. F.) در فهرست گونه‌های در معرض خطر قرار گرفته‌است. درحالی که این گونه با زیستگاه‌های گچ سازگار است. برای درک بهتر نحوه سازش این گونه به خاکهای گچی مطالعات ریخت شناسی و ریز ریخت شناسی انجام گردید. آنالیز های همبستگی (RDA)، ضرایب همبستگی پیرسون بین متغیرها برای ارزیابی اثر عوامل محیطی بر فراوانی گونه N. eremokosmos استفاده شد. خصوصیات فیزیکوشیمیایی خاک از نظر فاکتورهایی شامل CaCO3، pH، EC، کلسیم، منیزیم، سدیم، پتاسیم، فسفر و نیتروژن مورد بررسی قرار گرفت. ایدیوبلاست ها به وضوح در پارانشیم برگ این گونه مشاهده شدند. همچنین کریستال های معدنی مانند اگزالات کلسیم در پارانشیم برگ وجود دارد که گیاه را قادر می سازد به خوبی با خاک های گچی سازگار شود. محتوای کلسیم در زیستگاه های N. eremokosmos به طور معنی داری بیشتر از سایت های شاهد بود. عوامل EC،pH و نیتروژن تأثیر منفی بر فراوانی و توزیع این گونه دارند. یافته‌های ما نشان داد که پتاسیم، گچ، CaCO3 و درصد ماسه از بافت خاک نقش اساسی در فراوانی N. eremokosmos دارند. شناخت روابط بین متغیرهای محیطی و توزیع گونه N. eremokosmos به ما کمک می‌کند تا این یافته‌ها را برای ایجاد برنامه‌های حفظ و کشت این گونه در آینده به کار ببریم.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Anatomical, Micro- Morphological and Habitat Properties of the Endangered Plant, Catmint Gypsophile (Nepeta eremokosmos Rech. F.)

نویسندگان [English]

  • farzane Bahadori 1
  • Fatemeh Rabizadeh 2

1 Assistant professor at the Agricultural and Natural Resources Research Center of Education and Extension Organization (AREEO), Semnan

2 Assistant Professor, Farzangan Campus, Semnan University, Iran. .

چکیده [English]

In the Iranian Red Data Book, Gypsophile Nepeta (Nepeta eremokosmos Rech. F.) is listed as a threatened species. It is naturally adapted to gypsum habitats. Understanding the relationships between environmental variables and N. eremokosmos distribution helps us apply these findings to establish preservation and cultivation programs. To understand the main adaptive mechanisms of N. eremokosmos to gypsic soils, anatomical analyses were performed. RDA (Redundancy Analysis), Pearson's correlation coefficients between explanatory variables were used to evaluate the effect of environmental factors on the abundance of N. eremokosmos species. Physicochemical characteristics of the soil were investigated in terms of factors including CaCO3, pH, EC (Electrical Conductivity), calcium, magnesium, sodium, potassium, phosphorus, and nitrogen. Idioblasts were clearly observed in this species' leaf parenchyma. There are also mineral crystals such as calcium oxalate in the leaf parenchyma that enable the plant to adapt well to gypsic soils. The calcium content was twice as large in N. eremokosmos habitats as in control sites. EC, pH, and nitrogen factors negatively impact this species' frequency and distribution. Our findings revealed that potassium, gypsum, CaCO3, and sand percentage had an essential role in N. eremokosmos abundance. In the future, this study will screen the critical factors for the domestication and cultivation of this species based on its habitat properties.

کلیدواژه‌ها [English]

  • Keywords: Gypsum Catmint
  • Idioblast
  • Soil
  • Semnan
  • Scanning Electron Microscope
[1] Skendi A, Irakli M, Chatzopoulou P & Papageorgiou M. (2019). Aromatic plants of Lamiaceae family in a traditional
bread recipe: Effects on quality and phytochemical content. J. Food. Biochem; 43 (11), 20-30.
[2] Noroozi, J., & Ajani, Y. (2013). A New Alpine Species of Nepeta sect. Capituliferae (Labiatae) from Northwestern Iran.
NOVON 22 (3), 297–303.
[3] Amirmohammadi, F. Z., Azizi, M., Neamati, S. H., Memariani, F. & Murphy R. (2019). Nutlet micromorphology of
Iranian Nepeta (Lamiaceae) species. Nordic. Journal of Botany. 37 (8). 1-11.
[4] Zomorodian, K., Saharhkiz, M. J., Rahimi, M. J., Sharififard, S., Pakshir, K. & Khashei, R. (2013). Chemical composition
and antimicrobial activities of essential oil of Nepeta cataria L. against common cause of oral infections. Journal of
dentistry 10 (4), 329.
[5] Malakikia, Z., Hakimi, L. & Bahadori, F. (2020). The qualitative and quantitative analysis of Nepeta eremokosmos Rech.
f. in its natural habits (Semnan province) during the phenological stages. Journal of Medicinal Plants, 19 (75), 213-
222.
[6] Alim A., Goze I., Cetin, A., Atas, A. D., Cetinus, S. A., & Vural, N. (2009). Chemical composition and in vitro
antimicrobial and antioxidant activities of the essential oil of Nepeta nuda L. subsp. Albiflora (Boiss.) gams. African
Journal of Microbiology, 3 (8),463-467.
[7] Mihaylova, D., Georgieva, L. & Pavlov, A. (2013). In vitro antioxidant activity and phenolic composition of Nepeta
cataria L. extracts. International journal of agricultural and technology, 1 (4), pp.74-79.
[8] Seladji, M., Bekhechi, C., Beddou, F., Hanane, D.I.B. & Bendimerad, N. (2014). Antioxidant activity and phytochemical
screening of Nepeta nepetella aqueous and methanolic extracts from Algeria. Journal of Applied Pharmaceutical
Science, 4 (2), 012-016.
[9] Jamzad, Z. (2013). Lamiaceae.” In Flora of Iran. No. 76, edited by M. Assadi, V. Mozaffrian, & A. A. Maassoumi, 455–
608. Tehran: Research Institute of forests and rangelands publication.
[10] Kilic, Ö. (2014). A Morphological Study on Nepeta fisa C.A.Mey. (Lamiaceae) from Bingöl (Turkey).” Bilegik Şeyh
Edebali Üniversitesi Fen Bilimler Dergisi 1 (1): 1–4.
[11] Serpooshan, F., Jamzad, Z., Nejadsattari, T. & Mehregan, I. (2014). Taxonomic significance of nutlet and leaf characters
in Hymenocrater, Nepeta sect. Psilonepeta and Lophanthus (Nepetinae, Nepetoideae: Lamiaceae). The Iranian Journal
of Botany, 20 (1), 80-95.
[12] Heshmati, G.A. (2007). Vegetation characteristics of four ecological zones of Iran. International Journal of Plant
Production 1 (2).
[13] Hasaninejad, M., Jamzad, Z., Afsharzadeh, S., & Saeidi, H. (2021). Chromosome counts of eight Iranian endemic species
of Nepeta L. (Lamiaceae). Caryologia, 74 (1), 53-61.
[14] Rechinger, K.H. 1982. Nepeta (Labiarae) in Rechinger Flora Iranica No. 150: Akademische Druck-U. Verlagsanstalt,
Graz-Austria.
[15] Moore, M. J. & Jansen R. K. (2007). Origins and biogeography of gypsophily in the Chihuahuan Desert plant group
Tiquilia subg. Eddya (Boraginaceae). Systematic Botany 32, 392–414.
[16] Powell, A. M. & Turner, B. L. (1977). Aspects of the plant biology of the gypsum outcrops of the Chihuahuan Desert.
In: R. H. Wauer & D. H. Riskind (Eds.). Transactions of the symposium on the biological resources of the Chihuahuan
Desert region, United States and Mexico, Sul Ross State University, Alpine, Texas, 17-18 October 1974 (pp. 315–325).
Washington, DC: U.S. Department of the Interior, National Park Service Transactions and Proceedings Series, Number
3.26
[17] Thulin, M. (1993). Flora of Somalia, Volume 1: Pteridophyta; Gymnospermae; Angiospermae (Annonaceae–Fabaceae).
London: Royal Botanic Gardens, Kew.
[18] Thulin, M. (1995). Flora of Somalia, Volume 4: Angiospermae (Hydrocharitceae–
Pandanaceae). London: Royal Botanic Gardens, Kew.
[19] Thulin, M. (1999). Flora of Somalia, Volume 2: Angiospermae (Tiliaceae–Apiaceae). London:Royal Botanic Gardens,
Kew.
[20] Thulin, M. (2006). Flora of Somalia, Volume 3: Angiospermae (Ericaceae–Asteraceae). London: Royal Botanic
Gardens, Kew.
[21] Akpulat, H. A. & Celik, N. (2005). Flora of gypsum areas in Sivas in the eastern part of Cappadocia in Central Anatolia,
Turkey. Journal of Arid Environments 61, 27–46.
[22] Mota Poveda, J.F., Sánchez Gómez, P., Merlo Calvente, M.E., Catalán Rodríguez, P., Laguna Lumbreras, E., De la Cruz
Rot, M., Navarro Reyes, F.B., Marchal Gallardo, F., Bartolomé Esteban, C., Martínez Labarga, J.M. & Sainz Ollero,
H. (2009). Aproximación a la checklist de los gipsófitos ibéricos. Anales de biología, vol. 31.
[23] Eftekhari, T., & Asadi, M. (2001). Identification and classification of gypsy flora in the west area of Semnan province.
DESERT (BIABAN). 6 (2), 87-114.
[24] Akhani, H. (2004). A new spiny, cushion-like Euphorbia (Euphorbiaceae) from south-west Iran with special reference
to the phytogeographic importance of local endemic species. Botanical Journal of the Linnean Society 146, 107-121.
[25] Rabizadeh, F., Zare-Maivan, H., Kazempour, S. H. (2019). Endemic gypsophytes composition delimitated by soil
properties and altitude: From calciphytes to halophytes in the south–central Alborz Ranges. Nordic Journal of Botany
36 (8).
[26] Jamzad, Z., Chase, M. W., Ingrouille, M., Simmonds, M. S. J. & Jalili, A. (2003a). Phylogenetic Relationships in Nepeta
L. (Lamiaceae) and Related Genera Based on ITS Sequence Data. Taxon, 52, 21 -32.
[27] Jamzad, Z., Grayer, R. J., Kite, G. C., Simmonds, M. S. J., Ingrouille, M. & Jalili, A. (2003b). Leaf Surface Flavonoids
in Iranian Species of Nepeta (Lamiaceae) and Some Related Genera. Biochemical systematics and ecology, 31, 587-
600.
[28] Jalili, A., Jamzad, Z. (1999). Red Data Book of Iran. A Preliminary Survey of Endemic, Rare and Endangered Plant
Species in Iran. Red Data Book of Iran. Page:13.
[29] Klute A. (1986). Methods of soil analysis, part 1 physical and mineralogical methods, Arnold Klute ed. Agron. 9; (part
1).
[30] Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a
proposed modification of the chromic acid titration method. Soil science, 37 (1), 29-38.
[31] Bremner, M. (1970). Nitrogen total, regular kjeldahl method. Methods of Soil Analysis, Part 2: Chemical and
Microbiological Properties.
[32] Olsen, S. R., Cole, C.V., Watenabe, F. S., & Dean L.A. (1954). Estimation of available phosphorous in soil bextraction
with sodium bicarbonate, U.S. Department of Agriculture cris; 939.USA.
[33] Varley, J. A. (1966). Automatic methods for the determination of nitrogen, phosphorus, potassium in plant material.
Analyst, 91 (1079): 119-126.
[34] Peyravi, S., Zahiri, R., Moradi Harsini K., Shayesteh Azimian, H. (2015). Investigation of geological and mineralogical
properties of Aftar mine zeolites. Semnan, Scientific Quarterly Journal, Geosciences, 24 (94), 27-36.
[35] Kianian, M.K., Ravanbakhsh, H., Ara, H., Nikou, Sh. (2019). Studying Environmental Factors on Halophyte and
Xerophyte Plants Establishment in Desert Region (Case Study: Semnan, Iran), EPH - International Journal of
Agriculture and Environmental Research 5 (2).
[36] Bolukbasi, A., Kurt, L., Palacio, S. (2015). Unravelling the mechanisms for plant survival on gypsum soils: an ana lysis
of the chemical composition of gypsum plants from Turkey, Plant Biology.
[37] Franceschi, V. R. & Horner, J. R. H. T. (1980). A microscopic comparison of calcium oxalate crystal idioblasts in plant
parts and callus cultures of Psychotria puncata (Rubiaceae). Zeitschrift fur Pflanzenphysiologie, 97 (5), 449- 455.
[38] Ozdemir, C., Ozkan, M. (2010). The morphological and anatomical properties of Gypsophila lepidioides boiss
(caryophyllaceae) endemic to Turkey. International Research Journal of Plant Science, 1 (4), 69-74.
[39] Tooulakou, G., Giannopoulos, A., Nikolopoulos, D., Bresta, P., Dotsika, E., Orkoula M.G., Kontoyiannis, C.G., Fasseas,
C., Liakopoulos, G., Klapa, M.I. 2016. Alarm photosynthesis”: Calcium oxalate crystals as an internal CO2 source in
plants. Plant Physiol, 171, 2577-2585.
[40] Karabourniotis G., Horner H.T., Bresta P., Nikolopoulos D., Liakopoulos G. (2020). New insights into the functions of
carbon-calcium inclusions in plants. New Phytologist 228, 845–854.
[41] Gómez-Espinoza, O., Gonzalez- Ramirez, D., Mendez- Gomez, J., Guillen- Watson, R., Medaglia- Mata, A. & Bravo,
L. A. (2021). Calcium oxalate crystals in leaves of the extremophile plant Colobantos quitensis (Kunth) bartl.
(Caryophyllaceae). Plants, 10 (9), 1787.
[42] Rabizadeh, F. (2020a). Ecological, anatomical, morphological, and micro-morphological characteristics of Gypsophila
mucronifolia (Caryophylaceae) endemic to gypsic soils of Semnan, Iran, Applied Biology, 33 (2), 46-61.
[43] Rabizadeh, F. (2020b). The First Anatomical, Morphological, and Ecological study of the Endemic Iranian Moltkia
gypsacea from the Boraginaceae family. Journal of Advanced Pharmacy Education & Research, 10 (S1), 171.
[44] Giuliani, C., Bottoni, M., Ascrizzi, R., Santagostini, L., Papini A., Flamini G., Fico G. (2020). Scutellaria brevibracteata
subsp. subvelutina (Rech.f.) Greuter & Burdet: morphological and phytochemical characterization. Natural Product
Research.
[45] Kilic, Ö. (2013). A Morphological and Systematical Study on Nepeta cataria L. (Lamiaceae) Distributed in the
Adıyaman Province.” Igdir Univ Journal of Instituents of Science and Technology 3 (1), 21–25.
[46] Hadi, N., Shojaeiyan, A., Sefidkon, F., Jafari, A. A., Misic, D.,Banjanac, T. & Siler, B. (2020). Assessment of
intraspecific genetic diversity in Nepeta Kotschyi Bioss., a native Iranian medicinal plant. Journal of Agricultural
Science and Technology, 22 (5), 1327-1342.