نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار ،گروه علوم زیستی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار ،گروه فیزیولوژی، دانشکده علوم زیستی و بیوتکنولوژی، دانشگاه شهید بهشتی، تهران ایران

چکیده

مقدمه: به‌خوبی ثابت شده است که سیستم گرلینرژیک اثر مهاری بر فعالیت تولیدمثلی دارد. پپتید وابسته به RF-amide-3 (RFRP-3) یکی از مهمترین نوروپپتیدهایی است که تولیدمثل پستانداران را تنظیم می‌کند. مطالعات، وجود گیرنده گرلین به‌نام گیرنده سکرتاگوگ هورمون رشد (GHS-R1a) را در نواحی حاوی RFRP-3 در مغز نشان داده‌اند. بنابراین، ممکن است سیستم گرلینرژیک در کنترل تولیدمثل از طریق RFRP-3 دخالت داشته باشد. هدف از این مطالعه بررسی نقش احتمالی گیرنده‌های GHS-R1a در تنظیم بیان mRNA ژن RFRP-3 و گیرنده آن GPR147 در هیپوتالاموس موش‌های صحرایی نر بود. روش‌ها: 40 سر موش صحرایی نر ویستار به 8 گروه تقسیم شدند (5n=). هر گروه سالین، 2، 4-یا-8 نانومول گرلین (آگونیست GHS-R1a)، 5، 10 یا 20 نانومول D-Lys3-GHRP-6 (DLS) (آنتاگونیست GHS-R1a)، یا همزمان گرلین (4 نانومول) و DLS (10 نانومول) از طریق کانول کاشته شده در بطن سوم مغز دریافت کرد. هیپوتالاموس موش 2 ساعت پس از درمان برای ارزیابی سطوح mRNA ژنهای RFRP-3 و GPR147 تشریح شد. نتایج: یافته‌های ما نشان داد که تزریق 4 نانومول (05/0P<) یا 8 نانومول (01/0P<) گرلین بیان mRNA-RFRP-3 را در مقایسه با گروه سالین به‌طور معنی‌داری افزایش داد. درحالی‌که تزریق 20 نانومول DLS به‌طور معنی‌داری (P<0.05) سطح mRNA RFRP-3 را نسبت به گروه سالین کاهش داد. پیش تجویز DLS به حیوانات دریافت‌کنندۀ گرلین از اثرات گرلین در افزایش بیان RFRP-3 جلوگیری کرد. گرلین یا DLS هیچ اثر قابل‌توجهی بر سطوح mRNA-GPR147 هیپوتالاموس نداشتند. بحث: فعالسازی حاد GHS-R1a بوسیله گرلین در بیان mRNA-RFRP-3 هیپوتالاموس نقش تحریکی دارد بدون آنکه تأثیر قابل‌توجهی بر سطح mRNA-GPR147 داشته باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Involvement of growth hormone secretagogue receptor (GHS-R1a) in regulation of RFRP-3 and GPR147 mRNA expression in hypothalamus of male rats

نویسندگان [English]

  • Farrin Babaei-Balderlou 1
  • Homayoun Khazali 2

1 Associate Professor.Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran

2 Associate Professor.Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

چکیده [English]

Introduction: It is well established that ghrelinerghic system has an inhibitory effect on reproductive activity. RFamide-related peptide-3 (RFRP-3) is one of the most important neuropeptides that regulates the mammalian reproduction. Studies have indicated the presence of the ghrelin receptor, called the growth hormone secretagogue receptor (GHS-R1a), in the RFRP-3 containing areas in the brain. Thus, it may be possible that ghrelinergic system involves in the control of reproduction through the RFRP-3. The aim of this study was to investigate the possible role of the GHS-R1a receptors in the regulation of RFRP-3 and its receptor GPR147 mRNA expression in the hypothalamus of male rats. Methods: 40 male Wistar rats in were divided in 8 groups (n=5) and each group received saline, 2,-4 or-8nmol ghrelin, 5,-10 or-20nmol D-Lys3-GHRP-6 (DLS), or concomitantly of ghrelin (4nmol) and DLS (10nmol) via the stereotaxically implanted cannula. Hypothalamus of rats was dissected 2h after treatment for evaluation of RFRP-3 and GPR147 mRNA levels. Results: Our findings indicated that 4nmol (P<0.05) or 8nmol (P<0.01) ghrelin injection significantly increased the RFRP-3 mRNA expression compare to saline group. While, the injection of 20nmol DLS significantly (P<0.05) decreased the RFRP-3-mRNA level when compared to saline group. Pretreatment of ghrelin-received animals with DLS prevented the increasing effects of ghrelin on RFRP-3 gene expression. Ghrelin or DLS had no significant effects on hypothalamic GPR147-mRNA levels. Conclusion: The acute activation of GHS-R1a by gherlin has a stimulatory role in hypothalamic RFRP-3 gene expression without any significant effects on GPR147-mRNA level in an acute treatment.

کلیدواژه‌ها [English]

  • D-Lys3-GHRP-6
  • Ghrelin
  • Hypothalamus
  • Rreproduction
  • RFamide-related peptide-3
[1]     Ishida, J., Saitoh, M., Ebner, N., Springer, J., Anker, S. D., & von Haehling, S. (2020). Growth hormone secretagogues: history, mechanism of action, and clinical development. JCSM rapid communications, 3(1), 25–37.
[2]     Broglio, F., Arvat, E., Gottero, C., Benso, A., Prodam, F., & Destefanis, S. (2003). Natural and synthetic growth hormone secretagogues: do they have therapeutic potential? Treatments in endocrinology, 2, 153–163.
[3]     Du, A., Li, N., Li, Z., Shen, R., Li, N., & Zhou, Y. (2022). GHS-R1a activity suppresses synaptic function of primary cultured hippocampal neurons. Biochemical and biophysical research communications, 602, 91–97.
[4]     Navarro, G., Aguinaga, D., Angelats, E., Medrano, M., Moreno, E., & Mallol, J. (2016). A significant role of the truncated ghrelin receptor GHS-R1b in ghrelin-induced signaling in neurons. Journal of biological chemistry, 291(25), 13048–13062.
[5]     Howick, K., Griffin, B. T., Cryan, J. F., & Schellekens, H. (2017). From belly to brain: targeting the ghrelin receptor in appetite and food intake regulation. International journal of molecular sciences, 18(2), 273. https://doi.org/10.3390/ijms18020273
[6]     Lv, Y., Liang, T., Wang, G., & Li, Z. (2018). Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Bioscience reports, 38(5), BSR20181061. https://doi.org/10.1042/BSR20181061
[7]     Abizaid, A., & Horvath, T. L. (2012). Ghrelin and the central regulation of feeding and energy balance. Indian journal of endocrinology and metabolism, 16(Suppl 3), S617--S626.
[8]     Sominsky, L., Hodgson, D. M., McLaughlin, E. A., Smith, R., Wall, H. M., & Spencer, S. J. (2017). Linking stress and infertility: a novel role for ghrelin. Endocrine reviews, 38(5), 432–467.
[9]     Seidel, M., Markmann Jensen, S., Healy, D., Dureja, A., Watson, H. J., Holst, B., … & Sjögren, J. M. (2021). A systematic review and meta-analysis finds increased blood levels of all forms of ghrelin in both restricting and binge-eating/purging subtypes of anorexia nervosa. Nutrients, 13(2), 709. https://doi.org/10.3390/nu13020709
[10]   Dutta, S., Biswas, A., Sengupta, P., & Nwagha, U. (2019). Ghrelin and male reproduction. Asian pacific journal of reproduction, 8(5), 227–232.
[11]   Poterasu, M., Rowland, D. L., Ciobanu, C., & Fica, S. (2020). Anorexia nervosa and reproduction: connecting brain to gonads. Journal of mind and medical sciences, 7(1), 1–8.
[12]   Ogata, R., Matsuzaki, T., Iwasa, T., Kiyokawa, M., Tanaka, N., Kuwahara, A., … & Irahara, M. (2009). Hypothalamic ghrelin suppresses pulsatile secretion of luteinizing hormone via $β$-endorphin in ovariectomized rats. Neuroendocrinology, 90(4), 364–370.
[13]   Miller, D. W., Harrison, J. L., Brown, Y. A., Doyle, U., Lindsay, A., Adam, C. L., & Lea, R. G. (2005). Immunohistochemical evidence for an endocrine/paracrine role for ghrelin in the reproductive tissues of sheep. Reproductive biology and endocrinology, 3, 1–14.
[14]   Vulliémoz, N. R., Xiao, E., Xia-Zhang, L., Germond, M., Rivier, J., & Ferin, M. (2004). Decrease in luteinizing hormone pulse frequency during a five-hour peripheral ghrelin infusion in the ovariectomized rhesus monkey. The journal of clinical endocrinology & metabolism, 89(11), 5718–5723.
[15]   Motta, G., Allasia, S., Ghigo, E., & Lanfranco, F. (2016). Ghrelin actions on somatotropic and gonadotropic function in humans. Progress in molecular biology and translational science, 138, 3–25.
[16]   Airapetov, M. I., Eresko, S. O., Lebedev, A. A., Bychkov, E. R., & Shabanov, P. D. (2021). Expression of the growth hormone secretagogue receptor 1a (GHS-R1a) in the brain. Physiological reports, 9(21), e15113. https://doi.org/10.14814/phy2.15113
[17]   Yamada, C. (2021). Relationship between orexigenic peptide ghrelin signal, gender difference and disease. International journal of molecular sciences, 22(7), 3763. https://doi.org/10.3390/ijms22073763
[18]   Carranza‐Martín, A. C., Nikoloff, N., Anchordoquy, J. P., Anchordoquy, J. M., Relling, A. E., & Furnus, C. C. (2021). Ghrelin antagonist D-Lys3-GHRP-6 counteract ghrelin effects in bovine cumulus-oocytes complexes matured in vitro. Reproduction in domestic animals, 56(9), 1235–1242.
[19]   Rasineni, K., Kubik, J. L., Casey, C. A., & Kharbanda, K. K. (2019). Inhibition of ghrelin activity by receptor antagonist [d-Lys-3] GHRP-6 attenuates alcohol-induced hepatic steatosis by regulating hepatic lipid metabolism. Biomolecules, 9(10), 517. https://doi.org/10.3390/biom9100517
[20]   Maletínská, L., Matyšková, R., Maixnerová, J., Sýkora, D., Pýchová, M., Špolcová, A., ... & Železná, B. (2011). The Peptidic GHS-R antagonist [D-Lys3] GHRP-6 markedly improves adiposity and related metabolic abnormalities in a mouse model of postmenopausal obesity. Molecular and cellular endocrinology343(1-2), 55-62.
[21]   Gomez, J. L., & Ryabinin, A. E. (2014). The Effects of ghrelin antagonists [D-L ys3]-GHRP-6 or JMV 2959 on ethanol, water, and food Intake in C57BL/6J Mice. Alcoholism: clinical and experimental research, 38(9), 2436–2444.
[22]   Mamgain, A., Sawyer, I. L., Timajo, D. A. M., Rizwan, M. Z., Evans, M. C., Ancel, C. M., … & Anderson, G. M. (2021). RFamide-related peptide neurons modulate reproductive function and stress responses. Journal of neuroscience, 41(3), 474–488.
[23]   Mohapatra, S. S., Mukherjee, J., Banerjee, D., Das, P. K., Ghosh, P. R., & Das, K. (2021). Rfamide peptides, the novel regulators of mammalian HPG axis: A review. Veterinary world, 14(7), 1867. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404114/
[24]   Johnson, M. A., Tsutsui, K., & Fraley, G. S. (2007). Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Hormones and behavior, 51(1), 171–180.
[25]   Singh, P., Anjum, S., Srivastava, R. K., Tsutsui, K., & Krishna, A. (2022). Central and peripheral neuropeptide RFRP-3: a bridge linking reproduction, nutrition, and stress response. Frontiers in neuroendocrinology, 65, 100979. https://doi.org/10.1016/j.yfrne.2022.100979
[26]   Hu, K. L., Chang, H. M., Li, R., Yu, Y., & Qiao, J. (2019). Regulation of LH secretion by RFRP-3--From the hypothalamus to the pituitary. Frontiers in neuroendocrinology, 52, 12–21.
[27]   Blum, I. D., Patterson, Z., Khazall, R., Lamont, E. W., Sleeman, M. W., Horvath, T. L., & Abizaid, A. (2009). Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience, 164(2), 351–359.
[28]   Paxinos, G., & Watson, C. (2005). The rat brain in stereotaxic coordinates. Elsevier Academic Press.
[29]   Kamvar, M., Mahmoudi, F., Mohammadzadeh, F., Khazali, H., & Bayrami, A. (2022). The Effects of 5-hydroxytryptamine and interaction with kisspeptin in controlling ghrelin and adiponectin secretion. International journal of basic science in medicine, 7(2), 77-81. (In Persian). https://ijbsm.zbmu.ac.ir/Article/ijbsm-23550
[30]   Lewis, M. J., Johnson, D. F., Waldman, D., Leibowitz, S. F., & Hoebel, B. G. (2004). Galanin microinjection in the third ventricle increases voluntary ethanol intake. Alcoholism: clinical and experimental research, 28(12), 1822–1828.
[31]   Hashimoto, H., Fujihara, H., Kawasaki, M., Saito, T., Shibata, M., Otsubo, H., … & Ueta, Y. (2007). Centrally and peripherally administered ghrelin potently inhibits water intake in rats. Endocrinology, 148(4), 1638–1647.
[32]   Babaei-Balderlou, F., & Khazali, H. (2016). Effects of ghrelin on sexual behavior and luteinizing hormone beta-subunit gene expression in male rats. Journal of reproduction & infertility, 17(2), 88-96. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842239/
[33]   Iwasa, T., Matsuzaki, T., Murakami, M., Kinouchi, R., Osugi, T., Gereltsetseg, G., … & Tsutsui, K. (2012). Developmental changes in the mammalian gonadotropin-inhibitory hormone (GnIH) ortholog RFamide-related peptide (RFRP) and its cognate receptor GPR147 in the rat hypothalamus. International journal of developmental neuroscience, 30(1), 31–37.
[34]   Rodríguez-Vázquez, E., Tena-Sempere, M., & Castellano, J. M. (2020). Mechanisms for the metabolic control of puberty. Current opinion in endocrine and metabolic research14, 78-84.
[35]   Sirotkin, A. V, Meszarošová, M., Grossmann, R., Benčo, A., & Valenzuela, F. (2011). Effect of inhibitor and activator of ghrelin receptor (GHS-R1a) on porcine ovarian granulosa cell functions. General and comparative endocrinology, 173(1), 105–110.
[36]   Forbes, S., Li, X. F., Kinsey-Jones, J., & O’Byrne, K. (2009). Effects of ghrelin on Kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat. Neuroscience letters, 460(2), 143–147.
[37]   De Bond, J. A., & Smith, J. T. (2014). Kisspeptin and energy balance in reproduction. Reproduction, 147(3), R53--R63.
[38]   Kohno, D., Gao, H.-Z., Muroya, S., Kikuyama, S., & Yada, T. (2003). Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes, 52(4), 948–956.
[39]   McIlwraith, E. K., & Belsham, D. D. (2020). Hypothalamic reproductive neurons communicate through signal transduction to control reproduction. Molecular and cellular endocrinology, 518, 110971. https://doi.org/10.1016/j.mce.2020.110971