[1] Mozaffarian V. (2015). Identification of medicinal and aromatic plants of Iran. Farahang Moaser. (In Persian). https://www.gisoom.com/book/11131259/
[2] Jamzad, Z. (2012). Flora of Iran: Lamiaceae. Publications of Forestry and Pasture Research Institute. (In Persian). https://www.gisoom.com/book/1875124/
[3] Ghaviandam Bovanlo, A., & Mazandarani, M. (2017). Aut ecology and phytochemical survey of Ziziphora clinopodioides Lam. with ethnopharmacology and floristic spectrum of medicinal plants in Bovanlou region (Northern Khorasan province). Eco-phytochemical journal of medicinal plants, 5(3), 63-74. (In Persian). https://sanad.iau.ir/journal/ejmp/Article/600657?jid=600657&lang=en
[4] Oksman-Caldentey, K. M., & Inzé, D. (2004). Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in plant science, 9(9), 433–440. DOI:10.1016/j.tplants.2004.07.006
[5] Holeski, L. M., Hillstrom, M. L., Whitham, T. G., & Lindroth, R. L. (2012). Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia, 170(3), 695–707. DOI:10.1007/s00442-012-2344-6
[6] Fenner, M. (1998). The phenology of growth and reproduction in plants. Perspectives in plant ecology, evolution and systematics, 1(1), 78–91. DOI:10.1078/1433-8319-00053
[7] Shukla, S., Mehta, A., Bajpai, V. K., & Shukla, S. (2009). In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food and chemical toxicology, 47(9), 2338–2343. DOI:10.1016/j.fct.2009.06.024
[8] Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant physiology and biochemistry, 148, 80–89. DOI:10.1016/j.plaphy.2020.01.006
[9] Zou, G. A., Guo, D., Zhao, H. Q., & Aisa, H. A. (2015). Bioactive constituents of Ziziphora clinopodioides. Chemistry of natural compounds, 51(5), 961–963. DOI:10.1007/s10600-015-1462-x
[10] Amiri, H., Beyraminia, L., & Hemmati Hassan Gavyar, P. (2017). Chemical composition and antioxidant activity of essential oil and methanol extract of aerial parts of Ziziphora clinopodioides Var. rigida. Journal of kerman university of medical sciences, 24(4), 329–337.
[11] Zhang, X., Ding, W., Li, J., Liu, F., Zhou, X., & Tian, S. (2015). Multi-elemental analysis of Ziziphora clinopodioides from different regions, periods and parts using atomic absorption spectrometry and chemometric approaches. Revista brasileira de farmacognosia, 25(5), 465–472. DOI:10.1016/j.bjp.2015.07.021
[12] Zhu, Y., Xiong, Y., Wang, H., & Li, P. (2017). Pharmacognostical and phytochemical studies on Ziziphora clinopodioides Lam. – A Kazakh and Uygur ethnomedicinal plant. Journal of pharmacy and pharmacognosy research, 5(6), 345–353. DOI:10.56499/jppres17.208_5.6.354
[13] Alp, S., Ercisli, S., Dogan, H. Ü. L. Y. A., Temim, E., Leto, A., Zia-Ul-Haq, M., ... & Aladag, H. (2016). Chemical composition and antioxidant activity Ziziphora clinopodioides ecotypes from Turkey. Romanian biotechnological letters, 21(2), 11298–11303.
[14] Šmejkal, K., Malaník, M., Zhaparkulova, K., Sakipova, Z., Ibragimova, L., Ibadullaeva, G., & Žemlička, M. (2016). Kazakh Ziziphora species as sources of bioactive substances. Molecules, 21(7), 826. DOI:10.3390/molecules21070826
[15] Senejoux, F., Demougeot, C., Kerram, P., Aisa, H. A., Berthelot, A., Bévalot, F., & Girard-Thernier, C. (2012). Bioassay-guided isolation of vasorelaxant compounds from Ziziphora clinopodioides Lam. (Lamiaceae). Fitoterapia, 83(2), 377–382. DOI:10.1016/j.fitote.2011.11.023
[16] Annegowda, H. V., Bhat, R., Min-Tze, L., Karim, A. A., & Mansor, S. M. (2012). Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. Journal of food science and technology, 49(4), 510–514. DOI:10.1007/s13197-011-0435-8
[17] Tohidi, B., Rahimmalek, M., & Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food chemistry, 220, 153–161. DOI:10.1016/j.foodchem.2016.09.203
[18] Esmaeili, A. K., Taha, R. M., Mohajer, S., & Banisalam, B. (2015). Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed research international, 2015. DOI:10.1155/2015/643285
[19] Kosalec, I., Bakmaz, M., Pepeljnjak, S., & Vladimir-Knežević, S. (2004). Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta pharmaceutica, 54(1), 65–72. https://repozitorij.unizg.hr/islandora/object/pharma:1377
[20] Carrasco-Pancorbo, A., Cerretani, L., Bendini, A., Segura-Carretero, A., Gallina-Toschi, T., & Fernández-Gutiérrez, A. (2005). Analytical determination of polyphenols in olive oils. Journal of separation science, 28(9–10), 837–858.
[21] Matkowski, A., Zielińska, S., Oszmiański, J., & Lamer-Zarawska, E. (2008). Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresource technology, 99(16), 7892–7896. DOI:10.1016/j.biortech.2008.02.013
[22] Omidbeigi, R. (2014). Production and processing of medicinal plants. Publications affiliated to Astan Quds Razavi. (In Persian). https://www.gisoom.com/book/1995655/
[23] Valares Masa, C., Sosa Díaz, T., Alías Gallego, J. C., & Chaves Lobón, N. (2016). Quantitative variation of flavonoids and diterpenes in leaves and stems of Cistus ladanifer L. at different ages. Molecules (Basel, Switzerland), 21(3), 275. DOI:10.3390/molecules21030275
[24] Moghaddam, M., Miran, S. ., & Mehdizadeh, L. (2018). Total phenolic content and antioxidant activity of Fumaria vaillantii extract at three phenological stages assayed by various methods. International journal of horticultural science and technology, 5(1), 93–102.
[25] Hudaib, M., Speroni, E., Di Pietra, A. M., & Cavrini, V. (2002). GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. Journal of pharmaceutical and biomedical analysis, 29(4), 691–700. DOI:10.1016/S0731-7085(02)00119-X
[26] Yosr, Z., Hnia, C., Rim, T., & Mohamed, B. (2013). Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity. Industrial crops and products, 43(1), 412–419. DOI:10.1016/j.indcrop.2012.07.044
[27] Ishikura, N. (1976). Seasonal changes in contents of phenolic compounds and sugar in Rhus, Euonymus and Acer leaves with special reference to anthocyanin formation in autumn. The botanical magazine tokyo, 89(4), 251–257. DOI:10.1007/BF02493301
[28] Verma, V., & Kasera, P. K. (2007). Variations in secondary metabolites in some arid zone medicinal plants in relation to season and plant growth. Indian journal of plant physiology, 12(2), 203. https://d1wqtxts1xzle7.cloudfront.net/80818110/ijpp-12-2-019-libre.pdf?1644858194=&response-content-disposition=inline%3B+filename%3DVariations_in_Secondary_Metabolites_in_S.pdf&Expires=1718030269&Signature=SXXew8VKLNGK9Ciqp-JjIbpdIMtX1SAgwqTpZCRH3wtnISQb1GaITfdNDhyNFNkfTqRTWn-wQYi5UDUw691e1iZgTQ3uIAAJxEV4L2eUaIxTWkBtmYESBlEgiN5ouKLiw8rzvwA61uP4kBj3XmEazoRLoddf8OnL3OEHPDjRhB8ozTxDENCjyCYgTiR1UxO4ud3HfcMFiTD4FztKSlt8hNOH7FZwPSnEhYyxa52bFhzi0sK9bsmydyBxF0pQtkIm2ybySLyfY2pctR-5JO5PInNk-jwx~VVkO4dtSLEKrqtY2zveMOTwxCBT8zWGYTT2Ax~O6YubEAYeKicvz3aHgQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
[29] Maleš, Ž., Žuntar, I., Nigović, B., Plazibat, M., & Vundać, V. B. (2003). Quantitative analysis of the polyphenols of the aerial parts of rock samphire-Crithmum maritimum L. Acta pharmaceutica, 53(2), 139–144.
[30] Ayan, A. K., Yanar, O., Cirak, C., & Bilgener, M. (2007). Morphogenetic and diurnal variation of total phenols in some hypericum species from Turkey during their phenological cycles. Bangladesh journal of botany, 36(1), 39–46. DOI:10.3329/bjb.v36i1.1547
[31] Saeb, K., Gholamrezaee, S., & Asadi, M. (2011). Variation of antioxidant activity of Melissa officinalis leaves extracts during the different stages of plant growth. Biomedical and pharmacology journal, 4(2), 237–243. DOI:10.13005/bpj/288
[32] Jaouadi, R., Cardoso, S. M., Silva, A. M. S., Ben Hadj Yahia, I., Boussaid, M., & Zaouali, Y. (2018). Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochemical systematics and ecology, 77, 10–15. DOI:10.1016/j.bse.2017.12.009
[33] Boulila, A., Sanaa, A., Salem, I. Ben, Rokbeni, N., M’rabet, Y., Hosni, K., & Fernandez, X. (2015). Antioxidant properties and phenolic variation in wild populations of Marrubium vulgare L. (Lamiaceae). Industrial crops and products, 76, 616–622. DOI:10.1016/j.indcrop.2015.07.069
[34] Verma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of applied research on medicinal and aromatic plants, 2(4), 105–113. DOI:10.1016/j.jarmap.2015.09.002
[35] Biswas, A., Dey, S., Li, D., Yiu, L., Zhang, J., Huang, S., ... & Deng, Y. (2020). Comparison of phytochemical profile, mineral content, and in vitro antioxidant activities of Corchorus capsularis and Corchorus olitorius leaf extracts from different populations. Journal of food quality, 2020, 1–14. DOI:10.1155/2020/2931097
[36] Bajalan, I., Mohammadi, M., Alaei, M., & Pirbalouti, A. G. (2016). Total phenolic and flavonoid contents and antioxidant activity of extracts from different populations of lavandin. Industrial crops and products, 87, 255–260. DOI:10.1016/j.indcrop.2016.04.059
[37] Zimmer, M., Auge, H., von Wühlisch, G., Schueler, S., & Haase, J. (2015). Environment rather than genetic background explains intraspecific variation in the protein-precipitating capacity of phenolic compounds in beech litter. Plant ecology and diversity, 8(1), 73–79. DOI:10.1080/17550874.2013.871655
[38] Ben El Hadj Ali, I., Bahri, R., Chaouachi, M., Boussaïd, M., & Harzallah-Skhiri, F. (2014). Phenolic content, antioxidant and allelopathic activities of various extracts of Thymus numidicus Poir. organs. Industrial crops and products, 62, 188–195. DOI:10.1016/j.indcrop.2014.08.021
[39] Çakmak, Y. S., Aktumsek, A., & Duran, A. (2012). Studies on antioxidant activity, volatile compound and fatty acid composition of different parts of Glycyrrhiza echinata L. EXCLI journal, 11, 178–187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941799/
[40] Benhammou, N., Ghambaza, N., Benabdelkader, S., Atik-Bekkara, F., & Kadifkova Panovska, T. (2013). Phytochemicals and antioxidant properties of extracts from the root and stems of Anabasis articulata. International food research journal, 20(5), 2057–2063.
[41] Boroja, T., Mihailović, V., Katanić, J., Pan, S. P., Nikles, S., Imbimbo, P., … Bauer, R. (2018). The biological activities of roots and aerial parts of Alchemilla vulgaris L. South african journal of botany, 116, 175–184. DOI:10.1016/j.sajb.2018.03.007
[42] Mihailović, V., Mišić, D., Matić, S., Mihailović, M., Stanić, S., Vrvić, M. M., ... & Stanković, M. S. (2015). Comparative phytochemical analysis of Gentiana cruciata L. roots and aerial parts, and their biological activities. Industrial crops and products, 73, 49–62. DOI:10.1016/j.indcrop.2015.04.013
[43] Stankovic, M. S., Niciforovic, N., Topuzovic, M., & Solujic, S. (2011). Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) reichenb. Biotechnology and biotechnological equipment, 25(1), 2222–2227. DOI:10.5504/bbeq.2011.0020