نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار .گروه زیست‌‌شناسی، دانشکدۀ علوم، دانشگاه رازی، کرمانشاه، ایران

2 استادیار، گروه زیست شناسی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

10.22051/jab.2023.42488.1537

چکیده

آگاهی از پراکندگی و استقرار گونه‌ها امری بدیهی و بسیار مهم در حفاظت از آنها است. از 35 گونه ی سوسمار جنسDarevskia Arribas, 1997 (خانواده لاسرتیده) ده گونه در ایران پراکنده شده ‌است. گونهD. raddei (Boettger, 1892) دارای سه زیر گونه D. r. chaldoranensis، D. r. raddei و D. r. vanensis است. Darevskia r. raddei در استان‌های اردبیل، آذربایجان شرقی و آذربایجان غربی پراکنش یافته است. در این مطالعه با استفاده از رویکرد بی‌نظمی بیشینه براساس متغیرهای اقلیمی، پتانسیل پراکنش، تعیین زیستگاه‌های مناسب و پیش‌بینی آنها از آخرین بین یخبندان، دوره هولوسن-میانی، عصر حاضر و آینده (2080) تحت سناریوهای نماینده خط سیر غلظت گازهای گلخانه‌ای (RCP 2.6 و RCP 8.5) برای سوسمار آذربایجانی D. r. raddei ارزیابی گردید. بارش گرم ترین سه ماه سال، میانگین دمای سردترین سه ماه سال و دمای فصلی مهمترین عوامل در شبیه‌سازی الگوی پراکنش D. r. raddei در آخرین بین یخبندان و دوره هولوسن-میانی بودند. میانگین دمای سردترین سه ماه سال، دمای فصلی، هم دمایی مهمترین عوامل شکل دهنده پراکنش آن در دوره معاصر بودند. برای آینده بارش گرم ترین سه ماه سال، بارش در سردترین سه ماه سال و هم دمایی مهمترین عوامل شکل دهنده پراکنش گونه بودند. به نظر می رسد با گذشت زمان، تغییرات اقلیمی عامل تخریب زیستگاه D. r. raddei بوده است، اگرچه نمی توان فعالیت های انسانی در تکه تکه شدن، تخریب و تغییر زیستگاه ها را نادیده گرفت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effects of climate change on the distribution pattern and habitat suitability of the Azerbaijan lizard Darevskia r. raddei (Boettger, 1892) (Lizards: Lasertidae)

نویسندگان [English]

  • Rasoul Karamiani 1
  • Amir Dehghani 2

1 Assistant Professor .Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran

2 Assistant Professor, Department of Biology, Faculty of Science, Shahid Madani University of Azerbaijan, Tabriz, Iran

چکیده [English]

The awareness of the distribution of species is very important in their conservation. Of 35 species lizards of the genus Darevskia Arribas, 1997 (Lacertidae), ten species are documented from Iran. The Azerbaijani lizard D. raddei (Boettger, 1892) include three recognized subspecies D. r. chaldoranensis, D. r. vanensis and D. r. raddei; Darevskia r. raddei is distributed in Ardabil, East Azerbaijan and West Azerbaijan Provinces. In the study, used the Maximum Entropy approach based on climatic variables, modeled the potential distribution areas and determined the suitable habitats in the Last Interglacial (LIG), and mid-Holocene (MH), the contemporary as well as predicated distribution in the future (2080) under the representative concentration pathway scenarios (RCP 2.6 and RCP 8.5) of greenhouse gas concentration levels for the subspecies. Precipitation of the warmest quarter of the year, mean temperature of the coldest quarter of the year and seasonal temperature were the most important factors in simulated the distribution pattern of the subspecies in the LIG and MH respectively. Mean temperature of the coldest quarter of the year, seasonal temperature, and isothermality variables constructed important contributions to the contemporary distribution it. Precipitation of the warmest quarter of the year, precipitation of the coldest quarter of the year and isothermality were the most important factors affecting species distribution for the future. It seems over time, climatic change has been responsible for destruction of habitats the subspecies, although human activity in the fragmentation, destruction and change of habitats cannot be ignored.

کلیدواژه‌ها [English]

  • Distribution
  • Azerbaijan lizard
  • weather conditions
[1]     Sillero, N., & Carretero, M. A. (2013). Modelling the past and future distribution of contracting species. The Iberian lizard podarcis carbonelli (squamata: lacertidae) as a case study. Zoologischer anzeiger - a journal of comparative zoology, 252(3), 289–298. https://www.sciencedirect.com/science/article/pii/S0044523112000629
[2]     Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological applications, 19(1), 181–197. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/07-2153.1
[3]     Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., … & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148. https://doi.org/10.1038/nature02121
[4]     Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in ecology and evolution, 19(9), 497–503. https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(04)00203-4?large_figure=true
[5]     Kleidon, A., & Mooney, H. A. (2000). A global distribution of biodiversity inferred from climatic constraints: results from a process-based modelling study. Global change biology, 6(5), 507–523. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2486.2000.00332.x
[6]     Ramirez-Villegas, J., Cuesta, F., Devenish, C., Peralvo, M., Jarvis, A., & Arnillas, C. A. (2014). Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal for nature conservation, 22(5), 391–404. https://www.sciencedirect.com/science/article/pii/S1617138114000387
[7]     Karamiani, R., Rastegar-Pouyani, N., & Rastegarpouyani, E. (2018). Modeling the past and current distribution and habitat suitability for Ablepharus grayanus and A. pannonicus (sauria: scincidae). Asian herpetological research, 9(1), 56-64.
[8]     Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., … & E. Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. https://nsojournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.2006.0906-7590.04596.x
[9]     Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of biogeography, 34(1), 102–117. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2699.2006.01594.x
[10]   Miao, C., Duan, Q., Sun, Q., & Li, J. (2013). Evaluation and application of Bayesian multi-model estimation in temperature simulations. Progress in physical geography: earth and environment, 37(6), 727–744. https://doi.org/10.1177/0309133313494961
[11]   Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., … & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823
[12]   Aghakhani Afshar, A., Hassanzadeh, Y., Besalatpour, A. A., & Pourreza Bilondi, M. (2017). Annual assessment of Kashafrood watershed basin climate components in future periods by using fifth report of intergovernmental panel on climate change. Journal of water and soil conservation, 23(6), 217–233. https://jwsc.gau.ac.ir/article_3486.html
[13]   Gunaratna, N., Liu, Y., & Park, J. (2013). Spatial autocorrelation. Journal of recuperado EL, 2, 1–14. https://www.stat.purdue.edu/~bacraig/SCS/Spatial Correlation new.doc
[14]   Hosseinian, S. (2021). Climate change and its effects on the distribution pattern of critically endangered lizards in Iran. Journal of animal environment, 13(4), 137–142. http://www.aejournal.ir/article_163061.html
[15]   Kafash, A., Kaboli, M., Koehler, G., Yousefi, M., & Asadi, A. (2016). Ensemble distribution modeling of the Mesopotamian spiny-tailed lizard, Saara loricata (Blanford, 1874), in Iran: an insight into the impact of climate change. Turkish journal of zoology, 40(2), 262–271. https://journals.tubitak.gov.tr/zoology/vol40/iss2/15/
[16]   Moreno-Rueda, G., Pleguezuelos, J. M., Pizarro, M., & Montori, A. (2012). Northward shifts of the distributions of Spanish reptiles in association with climate change. Conservation biology, 26(2), 278–283. https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/j.1523-1739.2011.01793.x
[17]   Ahmadzadeh, F., Flecks, M., Carretero, M. A., Mozaffari, O., Böhme, W., Harris, D. J., … & Rödder, D. (2013). Cryptic speciation patterns in Iranian rock lizards uncovered by integrative taxonomy. PloS one, 8(12), e80563. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080563
[18]   Arnold, E. N., Arribas, O., & Carranza, S. (2007). Systematics of the palaearctic and oriental lizard tribe lacertini (squamata: lacertidae: lacertinae), with descriptions of eight new genera. Zootaxa, 1430(1), 1–86. https://www.biotaxa.org/Zootaxa/article/view/zootaxa.1430.1.1
[19]   Nasrullah, R. P., Rasoul, K., Hamzeh, O., Azar, K., & Eskandar, R. P. (2012). A new subspecies of darevskia raddei (Boettger, 1892)(Sauria: Lacertidae) from the West Azerbaijan province, Iran. Asian herpetological research, 2(4), 216–222. https://lacertilia.de/AF/Bibliografie/BIB_6416.pdf
[20]   Freitas, S., Rocha, S., Campos, J., Ahmadzadeh, F., Corti, C., Sillero, N., … & Carretero, M. A. (2016). Parthenogenesis through the ice ages: a biogeographic analysis of Caucasian rock lizards (genus Darevskia). Molecular phylogenetics and evolution, 102, 117–127. https://www.sciencedirect.com/science/article/pii/S1055790316301233
[21]   Dehghani, A., Hosseinian Yousefkhani, S. S.,  Rastegar-Pouyani, N., Banan-Khojasteh, S. M., & Mohammadpour, A. (2014). Sexual size dimorphism in darevskia raddei (sauria: lacertidae) from northwestern Iran. Zoology in the middle east, 60(2), 120–124. https://doi.org/10.1080/09397140.2014.914715
[22]   Argaña, E., Freitas, S., Sillero, N., Corti, C., Drovetski, S. V, Garcia-Muñoz, E., … & Carretero, M. A. (2013). An apparent case of bilateral gynandromorphy in the femoral pores of the Caucasian rock lizard Darevskia raddei. Herpetology notes, 6(1), 77–80. https://www.academia.edu/download/53580351/An_apparent_case_of_bilateral_gynandromo20170619-2985-19dseje.pdf
[23]   Grechko, V. V, Bannikova, A. A., Kosushkin, S. A., Ryabinina, N. L., Milto, K. D., Darevsky, I. S., & Kramerov, D. A. (2007). Molecular genetic diversification of the lizard complex darevskia raddei (sauria: lacertidae): early stages of speciation. Molecular biology, 41(5), 764–775. https://doi.org/10.1134/S0026893307050093
[24]   van Vuuren, D. P., den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., van Ruijven, B., … & Van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic change, 81(2), 119–159. https://doi.org/10.1007/s10584-006-9172-9
[25]   Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological forecasting and social change, 74(7), 887–935. https://www.sciencedirect.com/science/article/pii/S0040162506001387
[26]   de Souza Muñoz, M. E., De Giovanni, R., de Siqueira, M. F., Sutton, T., Brewer, P., Pereira, R. S., … & Canhos, V. P. (2011). Openmodeller: a generic approach to species’ potential distribution modelling. GeoInformatica, 15(1), 111–135. https://doi.org/10.1007/s10707-009-0090-7
[27]   Rissler, L. J., Hijmans, R. J., Graham, C. H., Moritz, C., & Wake, D. B. (2006). Phylogeographic lineages and species comparisons in conservation analyses: a case study of california herpetofauna. The american naturalist, 167(5), 655–666. https://doi.org/10.1086/503332
[28]   Hosseinzadeh, M. S., Farhadi Qomi, M., Naimi, B., Roedder, D., & KAZEMI, S. M. (2018). Habitat suitability and modelling the potential distribution of the plateau snake skink ophiomorus nuchalis (sauria: scincidae) on the Iranian plateau. North-western journal of zoology, 14(1). http://macroecointern.dk/pdf-reprints/Hosseinzadeh_NWJZ_2018.pdf
[29]   Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models – how violating the equilibrium assumption can create new insights. Global ecology and biogeography, 21(11), 1126–1136. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1466-8238.2012.00768.x
[30]   Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of applied ecology, 38(5), 921–931. https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2664.2001.00647.x
[31]   Hijmans, R., Guarino, L., Cruz, M., & Rojas, E. (2000). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant genetics research newsletter, 127, 15–19. https://www.diva-gis.org/docs/pgr127_15-19.pdf
[32]   Vose, J. M., & Klepzig, K. D. (2013). Climate change adaptation and mitigation management options: a guide for natural resource managers in southern forest ecosystems. Taylor & Francis.
[33]   Zani, P. A., & Rollyson, M. E. (2011). The effects of climate modes on growing-season length and timing of reproduction in the pacific northwest as revealed by biophysical modeling of lizards. The american midland naturalist, 165(2), 372–388. https://doi.org/10.1674/0003-0031-165.2.372
[34]   Araújo, M. B., Thuiller, W., & Pearson, R. G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. Journal of biogeography, 33(10), 1712–1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x
[35]   Karamiani, R., & Rastegar-Pouyani, N. (2021). The effect of climate change on habitat suitability and a distribution model of the Iranian fat--tailed gecko, Eublepharis angramainyu Anderson and Leviton, 1966 (sauria: eublepharidae) since the last interglacial to 2050. Zoology and ecology, 31, 24–32. https://www.researchgate.net/profile/Rasoul-Karamiani-2/publication/354733268_