نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران.

10.22051/jab.2023.42022.1517

چکیده

شرایط نسبتاً پایدار غارها مانند رطوبت و حداقل تغییرات دما، مکان مناسبی را برای تولیدمثل، کسب غذا و دوری از دمای شدید در برخی حیوانات، از جمله دوزیستان بی‌دم که غارزیان تصادفی محسوب می‌شوند، فراهم می‌کند. دوزیستان بی‌دم شکارچیان فرصت‌طلبی هستند که از منابع غذایی با فراوانی بیشتر در محیط اطرافشان تغذیه می‌کنند. در پژوهش حاضر به بررسی رژیم غذایی وزغ Bufotes sitibundus (Pallas, 1771) ساکن محیط غار پرداخته شد، و ضمن معرفی این گونه، گزینه‌های غذایی آن‌ها با نمونه‌های مشابه بیرون از محیط غار مورد مقایسه قرار گرفت. محتویات معده 37 نمونه وزغ به روش تخلیه محتویات معده جداسازی و مجموعاً 469 گزینه غذایی تا حد راسته یا خانواده شناسایی شدند. بررسی محتویات معده نشان داد که هر دو گروه وزغ اغلب از بندپایان خشکی‌زی تغذیه می‌کنند. وزغ‌های بیرون از محیط غار رژیم غذایی متنوع‌تر و با فراوانی بیشتری را نسب به نمونه‌های ساکن غار دارا بودند که راسته بال‌غشائیان با 89/44 درصد و قاب‌بالان با 38/30 درصد دارای بیشترین فراوانی بودند. در نمونه‌های ساکن غار، قاب بالان با 45/48 درصد و بال‌غشاییان با 40/13 درصد دارای بیشترین فراوانی در بین گزینه‌های غذایی بودند. تنوع بیشتر گزینه‌های غذایی وزغ‌های بیرون غار نسبت به نمونه‌های ساکن غار انعکاسی از وضعیت بی‌مهرگان هر دو محیط است. تنوع و فراوانی کمتر گزینه‌های غذایی در محیط غار سبب به وجود آمدن رقابت غذایی شدیدتر در محیط منحصر به فرد و با منابع انرژی پایین غار است. همچنین وجود طعمه‌هایی با اندازه‌های مختلف در بین گزینه‌های غذایی، نشان‌دهنده‌ی یک تغذیه فرصت‌طلبانه می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparison of diet composition of variable toad Bufotes sitibundus (Amphibia: Anura: Bufonidae), inside and outside the caves in western Iran

نویسندگان [English]

  • Hamid Darvishnia
  • Amir Arsalan Kavyani Fard

Assistant Professor.Department of Biology, Payame Noor University, Tehran

چکیده [English]

The relatively stable conditions of caves, such as humidity and minimal variation of temperature, provide a suitable place to reproduce, exploit food, and avoid extreme temperatures in some animals, including anurans, which are considered trogloxenes or accidental cave dwellers. Anurans are opportunistic predators that feed upon numerous food resources that are more abundant in their environment. The diet of variable toads was investigated and compared between specimens collected inside and outside the caves. Using the stomach flushing technique, a total of 37 specimens of variable toads were flushed, and 469 food items were identified to order or family ranks. Examination of the stomach contents of toads demonstrated that the diet of two groups mainly consist of terrestrial insects. The toads outside the cave had a more variable and abundant diet than the specimens examined within the caves, with orders Hymenoptera (44.89%) and Coleoptera (30.38%) as the first and second highest rank of abundance. Coleoptera (48.45%) and Hymenoptera (13.40%) were the most abundant food items among specimens collected from the caves. Greater variety of food items of toads outside the caves compared to the toads within the caves is a reflection of invertebrate communities in both environments. The less diversity and abundance of food items in the cave habitat implies a more intense food competition in the cave's unique environment with low energy resources. The presence of different size preys among the food items also, indicates an opportunistic feeding in this toad.

کلیدواژه‌ها [English]

  • Accidental cave dweller
  • Anuran Amphibian
  • Coleoptera
  • Food items
  • Terrestrial Invertebrates
[1]     Ford, D., & Williams, P. (2013). Karst hydrogeology and geomorphology. Karst Hydrogeology and Geomorphology. John Wiley & Sons. 1-562. DOI:10.1002/9781118684986
[2]     Parimuchová, A., Dušátková, L. P., Kováč, Ľ., Macháčková, T., Slabý, O., & Pekár, S. (2021). The food web in a subterranean ecosystem is driven by intraguild predation. Scientific reports, 11(1), 4994. DOI:10.1038/s41598-021-84521-1
[3]     Culver, D. C., & Pipan, T. (2019). The biology of caves and other subterranean habitats. Oxford University Press. DOI:10.1093/oso/9780198820765.001.0001
[4]     Romero, A. (2009). Cave biology: life in darkness. Cambridge University Press.
[5]     Baker, G. M., Taylor, S. J., Thomas, S., Lavoie, K., Olson, R., Barton, H. A., Denn, M., Thomas, S. C., Ohms, R., Helf, K. L., Despain, J., Kennedy, J., & Larson, D. (2015). Cave ecology inventory and monitoring framework. U.S. National Park Service. https://experts.illinois.edu/en/publications/cave-ecology-inventory-and-monitoring-framework
[6]     Sapkota, S., Bhattarai, B. P., Mishra, M. R., Adhikari, J. N., & Khatiwada, J. R. (2022). Diet composition and overlap of sympatric amphibians in paddy fields of Nepal. Herpetological conservation and biology, 17(1), 155–164.
[7]     Rosa, G. M., & Penado, A. (2013). Rana iberica (Boulenger, 1879) goes underground: Subterranean habitat usage and new insights on natural history. Subterranean biology, 11, 15–29. https://subtbiol.pensoft.net/article/1309/download/pdf/
[8]     Ayres, C. (2009). Post-hatching behaviour of Iberian brown frog (Rana Iberica Boulenger, 1879) tadpoles. Herpetology notes, 2(1), 141–142.
[9]     Biswas, J., & Shrotriya, S. (2011). Dandak: a mammalian dominated cave ecosystem of India. Subterranean biology, 8, 1–8. DOI:10.3897/subtbiol.8.1224
[10]   Eisenbeis, G., Rich, C., & Longcore, T. (2006). Artificial night lighting and insects: attraction of insects to streetlamps in a rural setting in Germany. Ecological consequences of artificial night lighting, 2, 191–198.
[11]   Dufresnes, C., Mazepa, G., Jablonski, D., Oliveira, R. C., Wenseleers, T., Shabanov, D. A., ... & Litvinchuk, S. (2019). Fifteen shades of green: the evolution of Bufotes toads revisited. Molecular phylogenetics and evolution, 141, 106615. DOI:10.1016/j.ympev.2019.106615
[12]   Maragno, F. P., & Souza, F. L. (2011). Diet of Rhinella Scitula (Anura, Bufonidae) in the Cerrado, Brazil: the importance of seasons and body size. Revista mexicana de biodiversidad, 82(3), 879–886. DOI:10.22201/ib.20078706e.2011.3.693
[13]   Bam-E-Zar, F., Fathinia, B., & Shafaei-Pour, A. (2019). Trophology of levant green frog, Pelophylax Bedriagae (Amphibia: Anura: Ranidae) in Choram township, Iran. North-western journal of zoology, 15(2), 168–174.
[14]   Kidera, N., Tandavanitj, N., Oh, D., Nakanishi, N., Satoh, A., Denda, T., ... & Ota, H. (2008). Dietary habits of the introduced cane toad Bufo Marinus (Amphibia: Bufonidae) on Ishigakijima, southern Ryukyus, Japan. Pacific science, 62(3), 423–430. DOI:10.2984/1534-6188(2008)62[423:DHOTIC]2.0.CO;2
[15]   Darvishnia, H. (2015). Biological survey of amphibians of Talesh Township and their biological role in pest control. Experimental animal biology, 4(2), 45-52 (In Persian). https://eab.journals.pnu.ac.ir/article_2122_en.html
[16]   Fathinia, B., Rastegar-Pouyani, N., Darvishnia, H., Shafaeipour, A., & Jaafari, G. (2016). On the trophic spectrum of Pelophylax Ridibundus (Pallas, 1771) (Amphibia: Anura: Ranidae) in western Iran. Zoology in the middle east, 62(3), 247–254. DOI:10.1080/09397140.2016.1226542
[17]   Fathinia, B., Ghorbani, B., Shafaei-Pour, A., Bamzar, F., and Ebrahimzadeh, S. (2019). The diet of Pelobates Syriacus Boettger, 1889, from the Ghorigol wetland, East Azerbaijan province, Iran. Herpetozona, 31(3/4), 201–209. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/8044875
[18]   Čađenović, N., Bjelić-Čabrilo, O., Stamenković, S., & Kralj, S. (2018). On the diet of recent metamorphs and adults of the Common Toad, Bufo Bufo (Linnaeus, 1758). Herpetozoa, 30((3/4)), 139–146. https://www.zobodat.at/pdf/HER_30_3_4_0139-0146.pdf
[19]   Darvishnia, H., & Fathinia, B, & Bakhshi, Y. (2018). Notes on dietary habits and biology of the vulnerable species Bufo Eichwaldi (Amphibia; Anura; Bufonidae) in Iran. Experimental animal biology, 7(2), 55-62. (In Persian). https://eab.journals.pnu.ac.ir/article_5180_en.html
[20]   Statistical Yearbook of Ilam Province. (2019). The plan and budget organization, management and planning organization of Ilam province, statistics and information unit. (In Persian). https://amarilam.ir/
[21]   Jedari Eyvazi, J. (2002). Geomorphology of Iran. Payam Noor University Publications. (In Persian). https://www.gisoom.com/book/1510795/
[22]   Solé, M., Beckmann, O., Pelz, B., Kwet, A., & Engels, W. (2005). Stomach-flushing for diet analysis in Anurans: an improved protocol evaluated in a case study in Araucaria forests, southern Brazil. Studies on neotropical fauna and environment, 40(1), 23–28. DOI:10.1080/01650520400025704
[23]   Triplehorn, C. A., Johnson, N. F., & Borror, D. J. (2005). Borror and DeLong’s introduction to the study of insects. Thomson Brooks/Cole, Belmont, CA, 864. https://library.wur.nl/WebQuery/titel/1783537
[24]   Choate, P. M. (2003). Introduction to the identification of insects and related arthropods. Identifying insects and related arthropods1, 8, 1–13. https://entnemdept.ufl.edu/choate/insectid.pdf
[25]   Çiçek, K., & Mermer, A. (2007). Food composition of the marsh frog, Rana Ridibunda Pallas, 1771, in Thrace. Turkish journal of zoology, 31(1), 83–90. https://journals.tubitak.gov.tr/zoology/vol31/iss1/12
[26]   Crnobrnja-Isailović, J., Ćurčić, S., Stojadinović, D., Tomašević-Kolarov, N., Aleksić, I., & Tomanović, Ž. (2012). Diet composition and food preferences in adult common toads (Bufo Bufo) (Amphibia: Anura: Bufonidae). Journal of herpetology, 46(4), 562–567. DOI:10.1670/10-264
[27]   Cicort-Lucaciu, A. S., Pelle, C., & Borma, I. T. (2013). Note on the food composition of a Pelophylax Ridibundus (Amphibia) population from the Dubova locality region, south-western Romania. Biharean biologist, 7(1), 33–36.
[28]   Norval, G., Huang, S. C., Mao, J. J., Goldberg, S. R., & Yang, Y. J. (2014). Notes on the diets of five amphibian species from southwestern Taiwan. Alytes, 30(1–4), 69. https://www.researchgate.net/profile/Gerrut-Norval/publication/267776997_Notes_on_the_diets_of_five_amphibian_species_from_southwestern_Taiwan/links/5661c71308ae192bbf8b9089/Notes-on-the-diets-of-five-amphibian-species-from-southwestern-Taiwan.pdf
[29]   Marques-Pinto, T., Barreto-Lima, A. F., & BrandãO, R. A. (2019). Dietary resource use by an assemblage of terrestrial frogs from the Brazilian Cerrado. North-western journal of zoology, 15(2), 135–146. https://biozoojournals.ro/nwjz/content/v15n2/nwjz_e181502_Marques.pdf
[30]   Daly, J. W., Martin Garraffo, H., Spande, T. F., Jaramillo, C., & Stanley Rand, A. (1994). Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? Journal of chemical ecology, 20(4), 943–955. DOI:10.1007/BF02059589
[31]   Covaciu-Marcov, S. D., Cupşa, D., Ferenti, S., David, A., & Dimancea, N. (2010). Human influence or natural differentiation in food composition of four Amphibian species from Histria fortress, Romania? Acta zoologica bulgarica, 62(3), 307–313.
[32]   Whiteman, H. H., Sheen, J. P., Johnson, E. B., VanDeusen, A., Cargille, R., & Sacco, T. W. (2003). Heterospecific prey and trophic polyphenism in larval tiger salamanders. Copeia, 2003(1), 56–67. DOI:10.1643/0045-8511(2003)003[0056:HPATPI]2.0.CO;2
[33]   López, J. A., Scarabotti, P. A., Medrano, M. C., & Ghirardi, R. (2009). Is the red spotted green frog Hypsiboas Punctatus (Anura: Hylidae) selecting its preys? The importance of prey availability. Revista de biologia tropical, 57(3), 847–857. DOI:10.15517/rbt.v57i3.5497
[34]   Isabel Camacho, A. (1992). The natural history of biospeleology (Monografías del Museo de Ciencias Naturales). CSIC Press.   
[35]   Bellati, J., Austin, A., & Stevens, N. (2003). Arthropod diversity of a guano and non-guano cave at the Naracoorte caves world heratige area, South Australia. South Australian museum 7, 257–265. https://digital.library.adelaide.edu.au/dspace/handle/2440/255
[36]   Hocking, D. J., & Babbitt, K. J. (2014). Amphibian contributions to ecosystem services. Herpetological conservation and biology, 9(1), 1-7.