نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار تبریز، دانشگاه شهید مدنی آذربایجان، دانشکده علوم پایه، گروه شیمی.

2 کارشناسی ارشد تبریز، دانشگاه شهید مدنی آذربایجان، دانشکده علوم پایه، گروه شیمی

3 دانشیار گروه مهندسی علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران.

4 استادیار دانشگاه شهید مدنی آذربایجان

5 استادیار تبریز، دانشگاه شهید مدنی آذربایجان، دانشکده علوم پایه، گروه شیمی

چکیده

مقدمه: اسیدهای فنلی متابولیتهای ثانویه گیاهی هستند که خواص زیستی فراوانی داشته و در اندام های مختلف گیاهان یافت میشوند که نقش مهمی در سلامت موجودات دارند.
روش کار: در این کار تحقیقاتی، عصاره گیری از اندام های مختلف گیاه Nepeta macrosiphon با کمک حلال اتانول 80 درصد انجام گرفت و در ادامه به فرکشن های اسیدهای فنلی آزاد و استری محلول تقسیم گردیدند. بعلاوه، محتوای کل ترکیبات فنلی و فلاونوئیدی، فعالیت آنتی اکسیدانی و مهار کننده گی آنزیم آلفا-گلوکوزیداز عصاره تام به همراه فرکشن ها مورد ارزیابی قرار گرفت و در نهایت ترکیبات آنها توسط HPLC مورد آنالیز قرار گرفت.
نتایج: عصاره اتانولی گل بیشترین مقدار فنل و فلاونوئید کل را داشت. همچنین این عصاره بالاترین فعالیت آنتی‌اکسیدانی را نشان داد. علاوه بر این، عصاره گل توانایی بیشتری در مهار آنزیم آلفا-گلوکوزیداز داشت. نتایج آنالیز اسیدهای فنلی نشان داد که گل بیشترین میزان اسیدهای فنلی را داشت و اسید رزمارینیک و اسید پارا-کوماریک عمده ترین اسیدهای فنلی آزاد بودند و اسید کافئیک نیز عمده ترین ترکیب موجود در عصاره اسیدهای فنلی استری محلول گل بود. همچنین عصاره حاوی اسیدهای فنلی آزاد حاصل از گل دارای بیشترین خاصیت آنتی اکسیدانی و مهار آنزیم آلفا-گلوکوزیداز در مقایسه با عصاره حاوی اسیدهای فنلی استری محلول و دیگر اندام ها بود.
نتیجه گیری: گل گیاه پونه سا دارای بیشترین ترکیبات فنلی از جمله اسید رزمارینیک ، اسید پارا-کوماریک و اسید کافئیک می باشد و با توجه به پتانسیل بالای آنتی اکسیدانی و مهار آنزیم آلفا-گلوکوزیداز می‌تواند در صنایع مختلف مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of phenolic acids and some biological activities of Nepeta macrosiphon

نویسندگان [English]

  • Saeed Mollaei 1
  • Hadiseh Abbasi Holasu 2
  • Behvar Asghari 3
  • Mostafa Ebadi 4
  • Hossein Hashempour 5

1 Associate Professor Tabriz Associate Professor, Shahid Madani University of Azerbaijan, Faculty of Basic Sciences, Department of Chemistry.

2 Msc.Tabriz, Azarbaijan Shahid Madani University, Department of chemistry

3 Associate Professor.Department of Horticultural Sciences Engeneering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

4 Assistant professor, Azarbaijan Shahid Madani University

5 Assistant Professor Tabriz, Azarbaijan Shahid Madani University, Department of chemistry

چکیده [English]

Introduction: Phenolic acids are secondary metabolites which have many biological activates, which are found at different organs of plants and have an important role in human health.
Methods: In this study, the extraction from different organs of Nepeta macrosiphon was done using ethanol 80% as solvent, and divided into free and esterified phenolic acids. Then, the total phenolic and flavonoid contents, antioxidant activity and inhibition of alpha-glucosidase enzyme of the extracts and their fractions were evaluated by using Folin-Ciocalteu, aluminum chloride, DPPH and spectrophotometric methods, and finally their compounds were analyzed by HPLC.
Results: The results indicated that the ethanolic extract of flower had the highest total phenolic and flavonoid, respectively. Also, this extract showed the highest antioxidant activity. Moreover, the flower extract had a greater ability to inhibit the alpha-glucosidase enzyme. The results of phenolic acids analysis showed that among the studied organs, flower had the highest amount of phenolic acids, and rosmarinic acid and para-coumaric acid were the main free phenolic acid, respectively, and caffeic acid was the main compound in the flower extract of esterified phenolic acids. Also, the flower extract containing free phenolic acids had the highest antioxidant activity and inhibition of alpha-glucosidase enzyme in comparison with the extracts containing esterified phenolic acids and other organs.
Conclusion: Based on the results, the flower have the highest phenolic compounds, including rosmarinic, para-coumaric, and caffeic acids and due to its high antioxidant potential and inhibition of alpha-glucosidase enzyme, it can be used in the pharmaceutical and food industries.

کلیدواژه‌ها [English]

  • Nepeta macrosiphon
  • Antioxidant
  • Alpha-glucosidase enzyme
  • Phenolic acid
 
Akdeniz, M., Ertas, A., Yener, I., Firat, M., and Kolak, U. (2020). Phytochemical and biological investigations on two Nepeta species: Nepeta heliotropifolia and N. congesta subsp. cryptantha. Journal of Food Biochemistry, 44(2): e13124.
Apostolidis, E., Kwon, Y.I., Shetty, K., Apostolidis, E., and Kwon, Y.I. (2006). Potential of cranberry-based herbal synergies for diabetes and hypertension management. Asia Pacific Journal of Clinical Nutrition, 15(3), 433–441.
Aras, A., Bursal, E., and Dogru, M. (2016). UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. lydiae. Journal of Applied Pharmaceutical Science, 6(11): 9-13.
Berhow, M.A., Affum, A.O., and Gyan, B.A. (2012). Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana. Journal of Medicinal Food, 15(7): 611-620.
Dao, T.M.A., Waget, A., Klopp, P., Serino, M., Vachoux, C., Pechere, L., and Sérée, E. (2011). Resveratrol increases glucose induced GLP-1 secretion in mice: a mechanism which contributes to the glycemic control. PloS One, 6(6): e20700.
Dienaitė, L., Pukalskienė, M., Matias, A.A., Pereira, C.V., Pukalskas, A., and Venskutonis, P.R. (2018). Valorization of six Nepeta species by assessing the antioxidant potential, phytochemical composition and bioactivity of their extracts in cell cultures. Journal of Functional Foods, 45: 512-522.
Dos Santos, M.D., Almeida, M.C., Lopes, N.P., and De Souza, G.E.P. (2006). Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biological and Pharmaceutical Bulletin, 29(11): 2236-2240.
Gao, H., Huang, Y.N., Xu, P.Y., and Kawabata, J. (2007). Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz. Food Chemistry, 105(2): 628-634.
Goleniowski, M., Bonfill, M., Cusido, R. and Palazo´n, J. (2013). Phenolic Acids. In: Ramawat K., Mérillon JM. (eds) Natural Products. Springer, Berlin, Heidelberg.
Hazrati, S., Mollaei, S., Rabbi Angourani, H., Hosseini, S. J., Sedaghat, M., and Nicola, S. (2020). How do essential oil composition and phenolic acid profile of Heracleum persicum fluctuate at different phenological stages?. Food Science and Nutrition, 8(11): 6192-6206.
Jamzad, Z. (2012). Flora of Iran, vol. 76. Lamiaceae. Research Institute of Forests and
Rangelands, 1066 pp. Tehran.
Jamzad, Z., Harley, M.M., Ingrouille, M., Simmonds, M.S.J., and Jalili, A., (2000). Pollen exine and nutlet surface morphology of the annual species of Nepeta L.(Lamiaceae) in Iran. Pollen and Spores: Morphology and Biology, 385-397.
Jasna, B.N., Milena, R., Ninoslav, D., Branka, V.G., Zora Dajic, S., Stoimir, K., and Zoran, S. (2017). < The> Balkan endemic plant Nepta rtanjensis [Lamiaceae]: phenolic composition, antioxidant activity and antigenotoxic effects on human lymphocytes treated with triiodothyronine in vitro. 929-938.
Johnston, K., Sharp, P., Clifford, M., and Morgan, L. (2005). Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Letters, 579(7): 1653-1657.
Kiliç, I., and Yeşiloğlu, Y. (2013). Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115: 719-724.
Klick, S., and Herrmann, K. (1988). Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry, 27(7): 2177-2180.
Kotowaroo, M.I., Mahomoodally, M.F., Gurib‐Fakim, A., and Subratty, A.H. (2006). Screening of traditional antidiabetic medicinal plants of mauritius for possible α‐amylase inhibitory effects in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20(3): 228-231.
Kraujalis, P., Venskutonis, P.R., and Ragazinskiene, O. (2011, May). Antioxidant activities and phenolic composition of extracts from Nepeta plant species. In Proceedings of the 6th Baltic Conference on Food Science and Technology (pp. 5-6).
Krygier, K., Sosulski, F., and Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. Journal of Agricultural and Food Chemistry, 30(2): 330-334.
Kumar, N., and Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24: e00370.
Kwon, Y.I.I., Vattem, D.A., and Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 15(1): 107.
Lam, T. B. T., Kadoya, K., and Iiyama, K. (2001). Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry, 57(6), 987-992.
Lee, J.H., Park, K.H., Lee, M.H., Kim, H.T., Seo, W.D., Kim, J.Y., and Ha, T.J. (2013). Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars. Food Chemistry, 136(2): 843-852.
Lee, S.Y., Lee, C.Y., Eom, S.H., Kim, Y.K., Park, N.I., and Park, S.U. (2010). Rosmarinic acid production from transformed root cultures of Nepeta cataria L. Scientific Research and Essays, 5(10): 1122-1126.
Lima, C. F., Fernandes-Ferreira, M., and Pereira-Wilson, C. (2006). Phenolic compounds protect HepG2 cells from oxidative damage: relevance of glutathione levels. Life Sciences, 79(21): 2056-2068.
Matsui, T., Tanaka, T., Tamura, S., Toshima, A., Tamaya, K., Miyata, Y., and Matsumoto, K. (2007). α-Glucosidase inhibitory profile of catechins and theaflavins. Journal of Agricultural and Food Chemistry, 55(1): 99-105.
McCue, P.P., and Shetty, K. (2004). Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pacific Journal of Clinical Nutrition, 13(1): 101-106.
Moradi-Afrapoli, F., Asghari, B., Saeidnia, S., Ajani, Y., Mirjani, M., Malmir, M., Yassa, N. (2012). In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. DARU Journal of Pharmaceutical Sciences, 20(1): 1-6.
Mozaffarian, V. (1996). Dictionary of Iranian plant names (Latin, English, Persian). Farhang Moaser Publlishers. Search in.
 Nestorović Živković, J., Živković, S., Šiler, B., Aničić, N., Dmitrović, S., Divac-Rankov, A., and Mišić, D. (2018). Differences in bioactivity of three endemic Nepeta species arising from main terpenoid and phenolic constituents. Archives of Biological Sciences, 70(1), 63-76.
Ngo, Y.L., and Chua, L.S. (2018). Anti-diabetic activity of rosmarinic acid rich fractions from Orthosiphon stamineus. Current Enzyme Inhibition, 14(2), 97-103.
Oboh, G., Ademiluyi, A.O., Akinyemi, A.J., Henle, T., Saliu, J.A., and Schwarzenbolz, U. (2012). Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. Journal of Functional Foods, 4(2): 450-458.
Ortiz-Andrade, R.R., Garcia-Jimenez, S., Castillo-Espana, P., Ramirez-Avila, G., Villalobos-Molina, R., and Estrada-Soto, S. (2007). α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent. Journal of Ethnopharmacology, 109(1): 48-53.
Ranilla, L.G., Kwon, Y.I., Apostolidis, E., and Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 101(12): 4676-4689.
Sales, P.M., Souza, P.M., Simeoni, L.A., Magalhães, P.O., and Silveira, D. (2012). α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of Pharmacy and Pharmaceutical Sciences, 15(1): 141-183.
Sarikurkcu, C., Eskici, M., Karanfil, A., and Tepe, B. (2019). Phenolic profile, enzyme inhibitory and antioxidant activities of two endemic Nepeta species: Nepeta nuda subsp. glandulifera and N. cadmea. South African Journal of Botany, 120: 298-301.
Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., and Iseki, K. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403(1-2): 136-138.
Shahidi, F., and Nacsk, M. (1995). Food phenolics: sources, chemistry, effects and application. Technomic Publ, Lancaster
Shahidi, F., Naczk, M. (2004). Phenolics in food and nutraceuticals: sources, applications and health effects. CRC Press, Boca Raton, FL
Shetty, K., and Wahlqvist, M. (2004). A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pacific Journal of Clinical Nutrition, 13(1): 1–24.
Siddiqui, N., Rauf, A., Latif, A., and Mahmood, Z. (2017). Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). Journal of Taibah University Medical Sciences, 12(4): 360-363.
Süntar, I., Nabavi, S. M., Barreca, D., Fischer, N., and Efferth, T. (2018). Pharmacological and chemical features of Nepeta L. genus: Its importance as a therapeutic agent. Phytotherapy Research, 32(2): 185-198.
Verpoorte, R., Contin, A., and Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry reviews, 1(1): 13-25.
Wang, M., Jiang, N., Wang, Y., Jiang, D., and Feng, X. (2017). Characterization of phenolic compounds from early and late ripening sweet cherries and their antioxidant and antifungal activities. Journal of Agricultural and Food Chemistry, 65(26): 5413-5420.