نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری حشره ‌شناسی گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه ارومیه- پردیس

2 دانشیار گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه ارومیه

3 استادیار گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه ارومیه

4 بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه

چکیده

باکتری Bacillus thuringiensis var. kurstaki در سطح وسیع برای کنترل لاروهای برگخوار چغندر‌قند‌Spodoptera exigua Hb. مورد استفاده قرار می‌گیرد. استفاده از دوزهای بالای این باکتری برای کنترل موثرتر، احتمال بروز مقاومت را افزایش می-دهد. استفاده از ترکیبات گیاهی و فیزیکی به همراه این باکتری به عنوان یک روش موثر در کاهش دوز مصرفی و افزایش اثر آن از اهمیت و جایگاه بالایی در برنامه‌های مدیریت تلفیقی آفات برخوردار است. لذا جهت کاهش در مصرف باکتری Btkو افزایش کارایی آن در اختلاط با نانو ذرات سیلیکا و نیمارین جهت کنترل لارو سن دوم برگخوارچغندرقند در شرایط آزمایشگاهی مورد ارزیابی گرفت.‌ شاخص LC50 به وسیله تجزیه پروبیت حاصل از تاثیر غلظت‌های مختلف باکتری، نانو ذرات سیلیکا و نیمارین بعد از 24، 48 و 72 ساعت به ترتیب (39/2252، 22/3219، 15/1608)، (31/1483، 49/1852، 35/793) و (78/724، 28/982، 71/393) میلی گرم بر لیتر به‌ دست -آمد. در بررسی اثر ترکیبی، بیشترین و کمترین مرگ و میر در تیمار ترکیب باکتری با نیمارین (LC25, AZ+LC25, Bt) (66 درصد) و تیمار شاهد (آب مقطر) (2درصد) بعد از 72 ساعت مشاهده شد، همچنین در ارزیابی خسارت با توجه به میانگین تیمارها، بیشترین خسارت در تیمار شاهد (3/55 درصد) و کمترین خسارت در تیمار ترکیب باکتری با نیمارین (LC25, AZ+LC25, Bt) (15 درصد) بعد از 5 روز حاصل شد. در این بررسی با توجه به افزایش کارایی باکتری Btk در تلفیق با نیمارین، کاربرد توام این دو عامل در راستای مدیریت مقاومت و کنترل پایدار جمعیت لاروهای برگخوار چغندرقند و آفات حساس قابل توصیه می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Bacillus thuringiensis var. kurstaki in combination with neemarin and silica nanoparticles in the control of second instar larvae of sugar beet, Spodoptera exigua Hb. (Lep.: Noctuidae) in laboratory condition

نویسندگان [English]

  • Majid Alimohamadian 1
  • Shahram Aramideh 2
  • Shahram Mirfakhraie 3
  • Maryam Frozan 4

1 1. PhD Student of Plant Protection Department, Faculty of Agriculture, Urmia University, Urmia-Pardis,

2 Associated Prof. of Plant Protection Department, Faculty of Agriculture, Urmia University, Urmia, Iran

3 Assistant Prof. of Plant Protection Department, Faculty of Agriculture, Urmia University, Urmia,

4 4. Assistant Prof. Plant Protection Research Department, West Azerbaijan Agricultural and Natural Resources Research Center, AREEO, Urmia,

چکیده [English]

Bacillus thuringiensis var. kurstaki (Btk)is used for control of sugar beet army worm larvae, Spodoptera exigua Hb. in large-scale. Using high doses for more effective control increases the likelihood of developing resistance. The use of plant and physical compounds with this bacterium as an effective method to reduce the dose of Btk and increase its effect is of great importance and place in integrated pest management programs. Therefore, in order to reduce the use of Btk and increase its efficiency in mixing with silica nanoparticles and Neemarin to control the larvae of the second larval of sugar beet in labratory condition were evaluated. The LC50 value by probit analysis of different concentrations of Btk, silica nanoparticles and neemarin after 24, 48 and 72 hours (2252.39, 3219.22, 1608.15), (1483.31, 1852.49, 793.35) and (724.78, 982.28, 393.71) mg. L.-1 were obtained, respectively. The highest and lowest mortality in the treatment of Btk combination with neemarin (LC25, NE+LC25, Bt) (%66) and the control treatment (distilled water) (%2) after 75 h were observed. Also in the assessment of damage according to the mean of treatments, the most damage in the control treatment (%55.3) and the least damage in the treatment of Btk combination with neemarin (LC25, NE+LC25, Bt) (%15) after 5 day were obtained. In this study, due to the increase in Btk efficiency in combination with neemarin, the combination of these two factors in order to manage resistance and sustainable control of sugar beet army worm larvae and susceptible pests is recommended.

کلیدواژه‌ها [English]

  • Bacillus thuringiensis
  • lethality‌
  • nano material
  • Spodoptera exigua
Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
Abd El-Wahab, A. S. El –Bendary, H. M. and El-Helaly A. A. (2016). Nano silica as a promising nano pesticide to control three different aphid species under semi-field conditions in Egypt. Egyptian Academic Journal of Biological Sciences F Toxicology & Pest Control, 8 (2): 35- 49.
Abdollahzadeh Bavani, M. Aramideh, Sh. and Hosseinzadeh A. (2019). Effect of Bacillus thuringiensis, SeNPV, Spinosad and Emamectin on third larval instar of Spodoptera exigua (Lep.: Noctuidae) in laboratory and field conditions. Plant Pest Research, 9 (1): 1-12.
Abedi, Z. Saber, M. Vojoudi, S. Mahdavi, V. and Parsaeyan E. (2014). Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science. 14: 30.
Ahmad, M. Farid, A. and Saeed, M. (2018). Resistance to new insecticides and their synergism in Spodoptera exigua (Lep.: Noctuidae) from Pakistan. Crop Protection, 107: 79-86.
Arumugam, G. Velayutham, V. Shanmugavel, S. and Sundaram, J. (2016). Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Col.: Bruchidae). Applied Nanoscience, 6: 445-450.
Atef, M. Sayeda, M. Sanghoon, Kimb. and Behleb, W. (2017). Characterization of silver nanoparticles synthesised by Bacillus thuringiensis as a nanobiopesticide for insect pest control. Biocontrol Science and Technology, 27(24).
Ayoub, H.A. Khairy, M. Rashwan, F.A. and Abdel-Hafez, H.F. (2017). Synthesis and characterization of silica nanostructures for cotton leaf worm control. Journal of Nanostructure Chemistry, 7:91-100.
Banu, A.N. Balasubramanian, C. and VinayagaMoorthi, P. (2014). Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Dip.: Culicidae). Parasitology Research, 113: 311-316.
Bilal, M. Xu, C. Cao, L. Zhao, P. Cao, C. Li, F. and Huang, Q. (2020). Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. with decreased detoxification enzymes activities. Pest Management Science, 76:3749-3758.
Caceres, M. Vassena, C.V. Garcera, M.D. and Santo-Orihuela, P.L. (2019). Silica nanoparticles for insect pest control. Current Pharmaceutical Design, 25: 4030-4038.
Chattopadhyay, P. Banerjee, G. and Mukherjee, S. (2017). Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech, 7:60.
Das, S.K. (2014). Scope and relevance of using pesticide mixtures in crop protection: a critical review. IJESTR, 2(5):119-125.
Da-yong, J. Xueli, Q. Xiangguo, L. and Yongwan, Y. (2012). Effects of Tween 80 on spreading of Bacillus thuringiensis on crop leaves and its control efficacy against Spodoptera exigua in scallion fields. Plant Protection, 38(5):143-146.
Da-yong, J. and Yong-man, Y. (2013). Effect on growth and development of Spodoptera exigua larvae by Bacillus thuringiensis CAB109. Northern Horticulture, 20(6):122-124.
Debnath, N. Das, S. Brahmachary, R.L. Chandra, R. Sudan, S. and Goswami, A. (2010). Entomotoxicity assay of silica, zinc oxide, titanium dioxide, aluminium oxide nanoparticles on Lipaphis pseudobrassicae. AIP Conference Proceedings, 1276: 307-310.
Debnath, N. Das, S. Seth, D. Chandra, R. Bhattacharya, S.C. and Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84: 99-105.
Dubois, N. R. Reardon, R. and Kolodny-Hirsch. D. M. (1988). Field efficacy of the NRD-12 strain of Bacillus thuringiensis against gypsy moth. Journal of Economic Entomology. 81: 1672-1677.
El-Naggar, M.E. Abdelsalam, N.R. Fouda, M.M.G. Mackled, M.I. Al-Jaddadi, M.A.M. Ali, H.M. Siddiqui, M.H. and Kandil, E.E. (2020). Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials, 10:739.
El-Samahy, M.F.M. Khafagy, I.F. and El-Ghobary, A.M.A. (2015). Efficiency of silica nanoparticles, two bioinsecticides, peppermint extract and insecticide in controlling cotton leafworm, Spodoptera littoralis Boisd. and their effects on some associated natural enemies in sugar beet fields. Journal of Plant Protection and Pathology, Mansoura University, 6:1221-1230.
Farahani, S. Talebi, A.A. and Fathipour, Y. (2011). Life cycle and fecundity of Spodoptera exigua (Lep.:Noctuidae) on five soybean varieties. Journal of Entomological Society of Iran, 30(2): 1-12.
Ghassemi-Kahrizeh, A. and Aramideh, Sh. (2014). Study on the synergistic effect of Henna in enhancement of pathogenicity of Bacillus thuringiensis Berliner on third and fourth instars larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Col.: Chrysomelidae). Archives of Phytopathology and Plant Protection, 47(12):1497-1507.
Goswami, A. Roy, I. Sengupta, S. and Debnath, N. (2010). Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252-1257.
Gould, F. Ramirez, A.M. Anderson, M. Ferre, J. Silva, F.J. and Moar, W.J. (1992). Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proceedings of the National Academy of Sciences, USA, 80: 7986-7990.
Hernandez-Martınez, P. Ferre, J. and Escriche B (2008) Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. Journal of Invertebrate Pathology, 97:245-250
Janmaat, A.F. and Myers, J. (2003). Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loppers, Trichoplusia ni. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270: 2263-2270.
Javi, E. Safaralizadeh, M.H. and Poormirza, A.A. (2004). Survey of pathogenic of Bacillus thuringiensis Berliner on different instar larvae of Leptinotarsa decemlineata (Say) (Col., Chrysomelidae) and effect of plant synergistic in increasing its efficiency in laboratory conditions. Sciences and Techniques of Agriculture and Natural Sources, 4: 187-198. (In Persian).
Jijkli, M.H. (2010). European market of biological control agents: actual situation and perspectives. Final Report of an EU Project 416Pp.
Khanizad, A. and Safaralizadeh, M.H. (2002). The evaluating synergist effect of tannic acid in combination with low doses Bacillus thuringiensis var. kurstaki on Galleria mellonella larvae, Proceedings of the Fifteenth Congress of Plant Protection, Kermanshah, Iran. Pp. 274. (In Persian).
Kish, K. J. (2004). Saprophagous caterpillars (Lepidoptera: Noctuidae: Herminiinae): Effects of Bacillus thuringiensis var. kurstaki application in forest and laboratory settings. Master of Science Thesis. West Virginia University.
Konecka, E. Kaznowski, A. and Tomkowiak, D. (2019). Insecticidal activity of mixtures of Bacillus thuringiensis crystals with plant oils of Sinapis alba and Azadirachta indica. Annals of Applied Biology,174(3): 364-371.
Ling, M. A. Gordon, G. and Zalucki, M. (2000). Biological effects of azadirachtin on Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae) fed on cotton and artificial diet. Austeralian Journal of Entomology. 39: 301–304. 23.
Luna-Espino, JC. Castrejón-Gómez, VR. Pineda, S. Figueroa, JA. and Martínez, AM. (2018). Effect of four multiple nucleopolyhedrovirus isolates on the larval mortality and development of Spodoptera exigua (Lep.: Noctuidae) determination of virus production and mean time to death. Florida Entomologist, 101(2): 153-159.
Malaikozhundan, B. Vaseeharan, B. Vijayakumara, S. and Thangaraj, M. P. (2017). Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. Journal of Photochemistry and Photobiology. B: Biology, 174: 306-314.
Marimuthu, S. Abdul Rahuman, A. Kirthi, A.V. Santhoshkumar, T. Jayaseelan, C. and Rajakumar, G. B. (2013). Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitology Research, 112: 4105–4112.
McGaughey, W.H. (1985). Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 229: 193-195.
Moar, W.J.M. Pusztai-Carey, H. van Faassen, D. Bosch and Frutos, R.  (1995). Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lep.: Noctuidae). Applied and Environmental Microbiology, 61: 2086-2092.
Murugan, K. Jeyabalan, D. Senthil-Kumar, N. Babu, R. Sivaramakrishnan, S. and Senthil-Nathan, S. (1998). Antifeedant and growth-inhibitory properties of neem limonoids against the cotton bollworm Helicoverpa armigera (Hubner). Insect Science and Its Application, 18: 157-162.
Namvar, P. Safaralizadeh, M.H. and Pourmirza, A.A. (2003). Studies on the susceptibility of Spodoptera exigua (Hubner) larvae to Bacillus thuringiensis under greenhouse conditions. Journal of Science and Technology of Agriculture and Natural Resources, 7: 215-221. (In Persian).
Nouri-Ganbalani, G. Borzoui, E. Abdolmaleki, A. Abedi, Z. and Kamita, S.G. (2016). Individual and combined effects of Bacillus thuringiensis and Azadirachtin on Plodia interpunctella Hubner (Lepidopetra: Pyralidae). Journal of Insect Science, 16(1):95 1–8.
Palma, L. Delia Muñoz, D. Berry, C. Murillo, J. and Caballero, P. (2014). Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins, 6(12): 3296-3325.
Pourmirza, A. A. (2005). Local variation in susceptibility of Colorado potato beetle (Col.: Chrysomelidae) to insecticide. Journal of Economic Entomology, 98: 2176-80.
Pavitra, G. Sushila, N. Sreenivas, A.G. and Ashok, J. Sharanagouda, H. (2018). Biosynthesis of green silica nanoparticles and its effect on cotton aphid, Aphis gossypii Glover and mealybug, Phenacoccus solenopsis Tinsley. International Journal of Current Microbiology and Applied Sciences, 7: 1450–1460.
Reardon, R, N. Dubois, and McLane. W. (1994). Bacillus thuringiensis for managing gypsy moth: A review. U. S. Forest Serv., National Center of Forest Health Management. Morgantown, WV. FHM-NC-01-94. 32 pp.
Rouhani, M. Samih, M.A. and Kalantari, S. (2012). Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). Journal of Entomology Research, 4:297-305.
Salama, H.S. and Salem, S.A. (2000). Bacillus thuringiensis and neem seed oil (Azadirachta indica) effects on the potato tuber moth Phthorimaea operculella zeller in the field and stores. Archiv für Phytopathologie und Pflanzenschutz, 33: 73-80.
Sansinenea, E. (2012). Bacillus thuringiensis Biotechnology. Dordrecht; Heidelberg; London; New York, NY: Springer.
Sarailoo, M.H. and Poorghaz, A.H. (2006). The effect of some plant origin materials against Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) in cotton field of Gonbad. Journal of Agriculture Science Natural Resources, 13(4): 62-72. (In Persian).
Schünemann, R. Knaak, N. and Fiuza, L.M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiology, 1-12.
Sharifzadeh, M.S. Abdollahzadeh, G. Damalas, Ch.A. and Rezaei, R. (2018). Farmers’ criteria for pesticide selection and use in the pest control process. Agriculture, 8: 24.
Sheibani, Z.T. (2010). Effect of Bacillus thuringiensis var. kurstaki on first, second and third ages of white leaf-eating butterfly larvae of Pistachio  Ocneria terebinthina (Lep.:Lymanteridae). Journal of Research in Agricultural Science, 6 (11): 83- 92.
Shoaib, A. Elabasy, A. Waqas, M. Lin, L. Cheng, X. Zhang, Q. and Shi, Z. (2018). Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lep.: Plutellidae) under laboratory conditions. Environmental Toxicology and Chemistry, 100: 80-91.
Singh, G. Rup, P. J. and Koul O. (2007). Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lep.: Noctuidae) larvae. Bulletin of Entomological Research, 97: 351-7.
Singh, P. and Moore, R. F. (2005). Handbook of Insect Rearing. Elsevier Science Publishers 7: 575- 576.
Siqueira, H.A.A. Moellenbeck, D. Spencer, T. and Siegfried. B.D. (2004). Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lep.: Crambidae) to Bacillus thuringiensis δ-endotoxins. Journal of Economic Entomology, 97: 1049-1057.
Soundararajan, R.P. (2012). Pesticides- Advances in Chemical and Botanical Pesticides. InTech, Rijeka, Croatia.
Sudo, M. Takahash,i D. Andow, D.A. Suzuki, Y. and Yamanaka, T. (2017). Optimal management strategy of insecticide resistance under various insect life histories: heterogeneous timing of selection and interpatch dispersal. Evolutionary Applications, (2): 271-283.
Tabashnik, B.E.  Zhang, M.  Fabrick, J.A. Wu, Y. and Gao, M. (2015). Dualmode of action of B.t. proteins: protoxin efficacy against resistant insects. Nature, 5: 15107.
Tabashnik, B.E. Liu, Y.B. Unnithan, D.C. Carriere,Y. Dennehy, T.J. and Morin, S. (2004). Shared genetic basis of resistance to B.t. toxin Cry1Ac in independent strains of pink bollworm. Journal of Economic Entomology, 97: 721-726.
Tabashnik, B. E. (1994). Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 39: 47-79.
Togbe, C.E. Zannou, E. Gbehounou, G. Kossou, and Huis, A.V. (2014). BBC: Biological based combinations- a concept way forward in sustainable pest management. International Journal of Tropical Insect Science, 34: 248-259.
Wraight, SP. and Ramos, ME. (2005). Synergistic interaction between Beauveria bassiana and Bacillus thuringiensis tenebrionis- based biopesticides applied against field populations of Colorado potato beetle larvae. Journal of Invertebrate Pathology, 90(3): 139-150.
Xu, J. Huigens, ME. Orr, D. and Groot, AT. (2014). Differential response of Trichogramma wasps to extreme sex pheromone types of the noctuid moth Heliothis virescens. Ecological Entomology, 39: 627-636.
Xu, Qin. Xuemei, Xiang. Xiaowen, Sun. Hong, Ni. and Lin, Li. (2016). Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery. International Journal of Biological Macromolecules, 82: 13-21.
Xu, X. Yu, L. and Wu, Y. (2005). Disruption of a cadherin gene associated with resistance to Cry1Ac d-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology, 71: 948-954.
Zhu,. F. Lavine, L. O’Neal, S. Lavine, M. Foss, C. and Walsh, D. (2016). Insecticide resistance and management strategies in urban ecosystems. Insects, 7(1): 2.