نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، پژوهشکده زیست فناوری، سازمان پژوهش های علمی و صنعتی ایران

2 استادیار، پژوهشکده زیست فناوری، سازمان پژوهش های علمی و صنعتی ایران

3 استاد، پژوهشکده زیست فناوری، سازمان پژوهش های علمی و صنعتی ایران

چکیده

پلی‌هیدروکسی آلکانوات‌ها پلیمر‌هایی زیست‌تخریب‌پذیر و زیست‌سازگار هستند که توسط طیف گسترده‌ای از سویه‌های باکتریایی تولید می‌شوند. در پژوهش حاضر، از سویه طبیعی باکتری Bacillus cereus‌ تولید کننده کوپلیمر پلی‌هیدروکسی بوتیرات-کو-والرات (PHBV) با بهره‌وری تولید بالا جداسازی شده از پساب نشاسته استفاده گردید. به منظور تولید، پساب نشاسته بعنوان یک محیط کشت ارزان‌قیمت بررسی شد. در ادامه با بررسی عوامل مؤثر، ترکیب بهینه محیط کشت ارزیابی و به منظور دستیابی به بهره‌وری بالاتر، روش کشت با تراکم بالای سلولی ارزیابی گردید. نتایج نشان داد که میانگین حداکثر تولید PHBV با استفاده از روش طراحی آزمایش پلاکت-برمن (عوامل مرتبط با محیط کشت)، حدود g/l 07/3 (5/59% وزن خشک سلول) است. در ادامه با ‌بهینه سازی کشت با تراکم بالای سلولی، میزان تولید به مقدار g/l 45/4 (بیش از 72% وزن خشک سلول) افزایش یافت. بنابراین می‌توان چنین نتیجه گیری کرد که روش کشت سلولی با تراکم بالا تاثیر معناداری بر بالا بردن بهره‌وری تولید PHBV توسط سویه B. cereus دارد. با توجه به بکارگیری محیط کشت ارزان‌قیمت پساب، اهمیت این نتایج دو چندان بوده و پتانسیل تولید در مقیاس صنعتی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of effective factors on optimization of biopolymer production of polyhydroxybutyrate-co-valerate (PHBV) by Plackett–Burman method and optimization of productivity by high cell density technique

نویسندگان [English]

  • Neda Sinaei 1
  • Davood Zare 2
  • Mehrdad Azin 3

1 PhD student, Biotechnology Research Institute, Scientific and Industrial Research Organization of Iran

2 Assistant Professor, Biotechnology Research Institute, Scientific and Industrial Research Organization of Iran

3 Professor, Biotechnology Research Institute, Scientific and Industrial Research Organization of Iran

چکیده [English]

Polyhydroxy alkanoates are biodegradable and biocompatible polymers produced by a wide range of bacterial strains. In the present study, the natural strain of Bacillus cereus producing polyhydroxybutyrate-co-valerate (PHBV) copolymer with high productivity isolated from starch effluent was used. In order to produce, starch effluent was studied as a cheap and expensive culture medium. Then, by examining the effective factors, the optimal composition of the culture medium was evaluated and in order to achieve higher productivity, the culture method with high cell density was evaluated. The results showed that the mean maximum production of PHBV using the platelet-Berman test design method (culture medium related factors) was about 3.07 g / l (59.5% of cell dry weight). Subsequently, by optimizing culture with high cell density, the production rate increased to 4.45 g / l (more than 72% of dry cell weight). Therefore, it can be concluded that the high-density cell culture method has a significant effect on increasing the productivity of PHBV production by B. cereus. Due to the use of cheap culture medium and the cost of wastewater, the importance of these results is twofold and shows the potential for production on an industrial scale.

کلیدواژه‌ها [English]

  • starch wastewater
  • polyhydroxybutyrate-co-valerate
  • Plackett&ndash
  • Burman method
  • Bacillus cereus
  • PHBV
Ahn, J., Jho, E.H. and Nam, K. (2015). Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates. Env Eng Res, 20(3): 246-253.
Akaraonye, E., Keshavarz, T. and Roy, I. (2010). Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol, 85: 732-743.
Anderson, A.J. and Dawes, E.A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiology Review, 54: 450-472.
Aragão, G. M.F., Schmidell, W., Ienczak J. L. and Fischer S.A. (2009). Preparation of polyhydroxyalkanoates from a citric residue. PCT - WO2009/149529 A1.
Batcha, A.F.M., Prasad, D.M.R., Khan, M.R. and Abdullah, H. (2014). Biosynthesis of poly(3- hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source. Bioprocess Biosyst Eng, 37: 943–951.
Bhuwal, A.K., Singh, G., Aggarwal, N.K., Goyal, V. and Yadav, A. (2014). Poly-β-hydroxybutyrate production and management of cardboard industry effluent by new Bacillus sp. NA10. Bioresour. Bioprocess, 1, 9.
Bosco, F. and Chiampo, F. (2010). Production of polyhydroxyalkanoates (PHAs) using milk whey and dairy wastewater activated sludge Production of bioplastics using dairy residues. J. Biosci. Bioeng, 109: 418–421.
Bourque, D., Pomerleau, Y. and Groleau, D. (1995). High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB. Appl Microbiol Biotechnol, 44: 367–376.
Dalcanton, F., Ienczak, J.L., Fiorese, M.L., Aragão, G.M.F. (2010). Production of poly (3-hydroxybutyrate) by Cupriavidus necator in hydrolyzed rice starch medium with soybean oil supplementation at different temperatures. Química Nova, 3, n. 33, 552-556.
Goff, M., Ward, P.G., and O’Connor, K.E. (2007). Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred tank reactor. J Biotechnol, 132: 283–286.
Guillet, J. (2004). Plastics and environment. In: Scott G (ed) Degradable polymers: principles and applications. 2nd edn. Kluwer, New York, pp 1254–1263.
Hahn, SK, Chang, YK, Kim, BS, Lee, KM, Chang, H.N. (1993) The recovery of poly(3-hydroxybutyrate) by using dispersions of sodium hypochlorite solution and chloroform. Biotechnology Techniques, 7(3): 209-212.
Kanjanachumpol, P., Kulpreecha, S., Tolieng, V. and Thongchul, N. (2013). Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess and biosystems engineering, 36 (10): 1463-1474.
Law, J, Slepecky, R.A. (1961). Assay of poly-beta-hydroxybutyric acid. Journal of Bacteriology, 82(1):33–36.
Lenz, R.W. and Marchessault, R.H. (2005). Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules, 61:1–8.
Mohan, S., Oluwafemi, O.S., Kalarikkal, N., Thomas, S. and Songca, S.P. (2016). Biopolymers– application in nanoscience and nanotechnology. Recent Adv. Biopolymers, 47.
Mohapatra, S., Mohanta, P.R., Sarkar, B., Daware, A., Kumar, C. and Samantaray, D.P. (2015). Production of Polyhydroxyalkanoates (PHAs) by Bacillus Strain isolated from waste water and its biochemical characterization. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci, 87(2): 459–466.
Mothes, G., Rivera, H.S., and Babel, B. (1997). Competition between β Ketothiolase and Citrate Synthase during Poly(β-hydroxybutyrate) Synthesis in Methylobacterium rhodesianum, Arch. Microbiol., 166: 405-410.
Mothes, G., Ackermann, J.U., and Babel, W. (1998). Regulation of Poly(β-hydroxybutyrate) Synthesis in Methylobacterium rhodesianum MB 126 Growing on Methanol or Fructose, Arch. Microbiol., 169: 360-363.
Nygaard, D., Yashchuk, O., Noseda, D.G., Araoz, B. and Hermida, E.B. (2021). Improved fermentation strategies in a bioreactor for enhancing poly(3-hydroxybutyrate) (PHB) production by wild type Cupriavidus necator from fructose. J.heliyon 7, e05979.
Pal, A., Parbhu, A., Kumar, A.A., Rajagopal, B., Dadhe, K., Pannamma, V. and Shivakumar, S. (2002). Optimization of Process Parameters for Maximum Poly (β) hydroxybutyrate (PHB) production by Bacillus thuringiensis IAM 12077. Polish Journal of Microbiology, 2: 149-154.
Sinaei, N., Zare, D. and Azin, M. (2021). Production and characterization of poly 3-hydroxybutyrate-co-3-hydroxyvalerate in wheat starch wastewater and its potential for nanoparticle synthesis. Brazilian Journal of Microbiology: 52(2): 561-573. DOI: 10.1007/s42770-021-00430-5.
Yuan, Q., Sparling, R. and Oleszkiewicz, J. (2020). Polyhydroxybutyrate Production from Municipal Wastewater Activated Sludge with Different Carbon Sources. J. Air, Soil and Water Research, 8(1).
Yamane, T. and Shimizu, S. (1984). Fed-batch techniques in microbial processes. Adv Biochem Eng Biot, 30: 147–194.