نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار پژوهشکده کشاورزی هسته ای. پژوهشگاه علوم و فنون هسته‌ای. کرج. ایران.

2 استادیار پژوهشکده کشاورزی هسته ای. پژوهشگاه علوم و فنون هسته‌ای. کرج. ایران.

چکیده

هدف از انجام این آزمایش بررسی تولید آنزیم تاناز توسط شبه گونه‌های قارچ تریکودرما (شامل ویریده، رسئی، هارزیانوم و لانگی براکیاتوم) در محیط‌ کشت تخمیری حاوی اسید تانیک به عنوان تنها منبع کربن و انرژی بود. خصوصیات موفولوژیکی گونه‌ها در محیط کشت حاوی مالت، مخمر و گلوکز (MYG) بررسی شد. برای تولید آنزیم، اسپور قارچها در محیط کشت تخمیری تریکودرما (TFM) حاوی اسید تانیک (1 درصد) کشت شد. نتایج نشان داد که کلنیهای تریکودرما ابتدا صاف بود و سپس به تدریج دستجات پشمی سفید رنگ در آنها ظاهر و به مرور سبز رنگ شد. بزرگترین اسپور مربوط به تریکودرما لانگی‌براکیاتوم و کوچکترین مربوط به تریکودرما رسئی بود. بیشترین و کمترین تعداد اسپور در محیط کشت MYG به ترتیب مربوط به تریکودرما هارزیانوم (106×48/5) و ویریده (106×12/2) بود. بیشترین رشد ریسه‌ در تریکودرما لانگی‌براکیاتوم و کمترین در رسئی مشاهده شد (به ترتیب 25/1 و 45/0 سانتی‌متر در روز). پروتئین تولیدی توسط تریکودرما رسئی کمتر از سه گونه دیگر بود (05/0>P). فعالیت ویژه آنزیمی در شبه گونه‌های لانگی‌براکیاتوم بیشتر از ویریده (به ترتیب 33/1 و 68/0واحد به ازای میلی‌گرم پروتئین) بود (05/0>P). تفاوت معنی‌داری در فعالیت آنزیمی تاناز تولیدی در شبه گونه‌های مورد مطالعه وجود نداشت. وزن مولکولی پروتئین تولیدی در سوپرناتانت محیط کشت TFM تولیدی 131 کیلودالتون با دو زیر واحد به وزن تقریبی 62 و 69 کیلودالتون بود. نتایج نشان داد که گونه‌های تریکودرما با استفاده از اسید تانیک به عنوان تنها منبع انرژی در محیط کشت تخمیری توانایی رشد و تولید تاناز را دارند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Tannase Production by Trichoderma Species in Tannin Containing Medium as a Sole Carbon and Energy Source

نویسندگان [English]

  • mehdi behgar 1
  • parvin Shawrang 1
  • farahnaz Motamedi Sedeh 1
  • samira shahbazi 2

1 Associate Professor Nuclear Science & Technology Research Institute, P. O. Box: 31485–498, Karaj, Iran.

2 Assistant Professor of Nuclear Agriculture Research Institute. Nuclear Science and Technology Research Institute. Karaj

چکیده [English]

This study investigated tannase production by Trichoderma viride (Tv), Trichoderma harzianum (Th), Trichoderma longibrachiatum (Tl) and Trichoderma ressei (Tr) in the medium containing tannin as sole carbon and energy source. Morphologic characteristic of Trichoderma species (T) were determined in culture containing malt-yeast-glucose. Trichoderma species were cultured in Trichoderma fermentation medium (TFM) which contained 1% Tanic acid. The weights of proteins produced by T in TFM were determined by SDS PAGE. Trichoderma colonies were flat, and then gradually showed white unsmooth appearance and finally turned to green. The largest and smallest spores were belonged to Tl and Tr, respectively. The highest and lowest spore numbers in MYG were belonged Th (5.48 × 106) and Tv (12.26 × 106), respectively. The largest growth rate of mycelium was observed in Tl and the lowest in Tr (1.25 and 0.45 cm/d, respectively). The level of protein produced in TFM by Tr was lower (P<0.05) than the other species. The tannase production and its specific activity were similar across species. The enzyme specific activity in Tl was significantly more (P<0.05) than Tv (1.33 and 0.68 ul/mg protein). The molecular weight of the produced tannase was 131 kDa with two subunits weighing approximately 62 and 69 kDa. The results showed that Trichoderma species have the ability to grow and produce tannase in the medium containing tannin as the sole carbon and energy source.

کلیدواژه‌ها [English]

  • Enzyme activity
  • Tannase
  • Tannin
  • Trichoderma
Abdulla, J., Rose S.P., Mackenzie, A.M., Mirza, W. and Pirgozliev, V. (2016). Exogenous tannase improves feeding value of a diet containing field beans (Vicia faba) when fed to broilers. British Poultry Science, 57: 246-250.
Aguilar, C.N., Rodríguez, R., Gutiérrez-Sánchez, G., Augur, C., Favela-Torres, E., Prado-Barragan, L.A., Ramírez-Coronel, A. and Contreras-Esquivel, J.C. (2007). Microbial tannases: advances and perspectives. Applied Microbiology Biotechnology, 76: 47-59.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
Bradoo, S., Gupta, R. and Saxena, R. (1996). Screening of extracellular tannase producing fungi: development of a rapid simple plate assay. The Journal of General and Applied Microbiology, 42: 325-329.
Chávez-González, M., Rodríguez-Durán, L.V., Balagurusamy, N., PradoBarragán, A., Rodríguez, R., Contreras, J.C. and Aguilar, C.N. (2012). Biotechnological Advances and Challenges of Tannase: An Overview. Food Bioprocess Technology. 445-459.
Devi, P., Prabhakaran, N., Kamil, D., Pandey, P. and Borah, J.L. (2012) Characterization of Indian native isolates of Trichoderma spp. and assessment of their bio-control efficiency against plant pathogens. African Journal of Biotechnology, 11: 15150-15160.
Gammoun, A., Moros, J., Tahiri, S., Garriques, S. and Guardia, M. (2006). Partial least-squares near-infrared determination of hydrocarbons removed from polluted waters by tanned solid wastes. Analytical and Bioanalytical Chemistry, 385: 766-770.
Gams, W. and Bissett, J. (1998). Morphology and Identification of Trichoderma. In: Kubicek, C.P., Harman, G.E. (Eds.), Trichoderma and Gliocladium. Vol. 1. Basic Biology, Taxonomy and Genetics. Taylor and Francis Ltd., London, 3-34.
Ghasemi, S., Safaie, N., Shahbazi, S., Shams-Bakhsh, M. and Askari, H. (2019). Enhancement of Lytic Enzymes Activity and Antagonistic Traits of Trichoderma harzianum Using γ-Radiation Induced Mutation. Journal of Agricultural Science and Technology. 21:1035-1048.
Grondona, I., Hermosa, R., Tejada, M., Gomis, M.D., Mateos, P.F., Bridge, P.D., Monte, E. and Garcia-Acha, I. (1997). Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Applied Environmental Microbiology, 63, 3189-3198.
Hatamoto, O., Watarai, T., Kikuchi, M., Mizusawa, K. and Sekine, H. (1996). Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene, 175: 215-221.
Iqbal, H. and Kapoor, A. (2012). Culture Conditions for the Production of Tannase from Trichoderma harzianum MTCC 10841. International Journal of Science and Technology, 1: 584-595.
Kannan, N., Aravindan, R. and Viruthagiri, T. (2010). Effect of culture conditions and kinetic studies on extracellular tannase production by Lactobacillus plantarum MTCC 1407. Indian Journal of Biotechnology, 10: 321-328.
Kannangara, S.R., Dharmarathna, M.G.C.S. and Jayarathna, D.L. (2017) Isolation, Identification and Characterization of Trichoderma Species as a Potential Biocontrol Agent against Ceratocystis paradoxa. The Journal of Agricultural Sciences, 12: 51-62.
Kapoor. A. and Iqbal, H. (2013). Efficiency of Tannase Produced by Trichoderma Harzianum MTCC 10841 in Pomegranate Juice Clarification and Natural Tannin Degradation. International Journal of Biotechnology and Bioengineering Research, 4: 641-650.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
Libuchi, S., Minoda, Y. and Yamada, K. (1967). Studies on tannin acyl hydrolase of microorganisms. Part II. A new method determining the enzyme activity using the change of ultra violet absorption. Agricultural and Biological Chemistry. 31: 513-518.
Lokeswari, N., Jaya Raju, K., Pola, S. and Bobbarala, V. (2010). Tannin acyl hydrolase from Trichoderma viride. International Journal of Chemical and Analytical Science, 1: 106-109.
Nadaf, N.H. and Ghosh, J.S. (2011). Production, Purification and Characterization of Tannase from Rhodococcus NCIM 2891. Current Research Journal of Biological Sciences, 3: 246-253.
Papavizas, G.C. and Lumsden, R.D. (1982). Improved medium for isolation of Trichoderma spp. from soil. Plant Disease, 66: 1019-1020.
Riul, A.J., Gonc, H.B., Goncalves, H.B., Jorge, J.A. and Guimaraes, L.H.S. (2013). Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. Journal of Molecular Catalysis B: Enzymatic, 85: 126-133.
Rout, S. and Banerjee, R. (2006). Production of tannase under mSSF and its application in fruit juice debittering. Indian Journal of Biotechnology, 5: 351-356.
Sabu, A., Kiran, G.S. and Pandey, A. (2005). Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620 Food Technology and Biotechnology, 43: 133-138.
Shahbazi, S. and Askari, H. (2017) Investigating of the Influence of Cellulase Enzymes from Mutated Isolates of Trichoderma harzianum and Trichoderma viride on Biodegradation of Cellulose Iα, Iβ and III. Agriculture Biotechnology, 17: 35-44.
Sekhar, Y.C., Ahammed, S.K., Prasad, T.N.V.K.V. and Devi, R.S.J. (2017). Identification of Trichoderma species based on morphological characters isolated from rhizosphere of groundnut (ARACHIS HYPOGAEA L). International Journal of Science, Environment and Technology, 6: 2056-2063.
Shajitha, G. and Nisha, M.K., 2018. Tannase production from agro-wastes as substrate by Trichoderma viride. International Journal of Current Research in Life Sciences, 7(05), pp.1994-1997.
Van-de Lagemaat, J. and Pyle, D.L. (2001). Solid-state Fermentation and Bioremediation: Development of a Continuous Process for the Production of Fungal Tannase. Chemical Engineering Journal, 84: 115-123.