نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ایلام

2 باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی، واحد خرم‌آباد، خرم‌آباد، ایران.

چکیده

     تنش سرمایی از مهم‌ترین عوامل محدودکننده رشد و نمو گیاهان مناطق گرمسیری مانند خیار در اوایل فصل رشد می‌باشد. در این تحقیق امکان مقاوم‌سازی به سرما در نشا خیار با پیش تیمار دمایی و خشکی مورد بررسی قرار گرفت. آزمایش به‌صورت فاکتوریل با دو فاکتور ارقام خیار (سوپر دامینوس و سوپر استار) و پنج تیمار مقاوم‌سازی (شاهد، دمای 10 و 15 درجه سانتی‌گراد) و تنش خشکی با استفاده از 10 و 20 درصد پلی‌اتیلن گلیکول در قالب طرح کاملاً تصادفی با سه تکرار انجام گرفت. پس از اعمال تیمارهای مقاوم‌سازی و فرصت 48 ساعته بازیابی، نشاها در دمای 3 درجه سانتی‌گراد به مدت 6 روز و هر روز 6 ساعت قرار گرفتند. نتایج نشان داد که مقاوم‌سازی سبب افزایش رشد نشا در شرایط تنش سرمایی شد. همچنین تیمار مقاوم‌سازی میزان کلروفیل، نسبت کلروفیل a/b، رطوبت نسبی، پرولین و پراکسید هیدروژن نشاها را افزایش و میزان نشت یونی را کاهش دادند. در بیشتر صفات مورد ارزیابی اختلاف آماری معنی‌داری بین ارقام مشاهده نشد. بیشترین تحمل سرمایی در پیش­تیمار 10 و 20 درصد PEG به دست آمد. به‌طورکلی نتایج این تحقیق نشان داد که اعمال پیش تیمار مقاوم‌سازی با تنش سرمایی و تنش خشکی می‌تواند آثار سوء تنش سرمایی بر نشا خیار را کاهش دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of hardening treatments on chilling stress tolerance of cucumber seedlings

نویسندگان [English]

  • Fardin Ghanbari 1
  • Sajad Kordi 2

1 Department of Horticultural science, Faculty of Agriculture, Ilam University, Ilam, Iran.

2 Young and Elite Research Club, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran.

چکیده [English]

Chilling stress is major limiting factor on growth and development of tropical crops like cucumber in early of growing season. In this research, the possibility of chilling hardening of cucumber seedlings was investigated through pretreatment of drought and temperature. The factorial experiment was consisted of two factors including cucumber cultivars (i.e. Super dominos and Super star) and hardening treatments (control, 10 °C, and 15 °C as well as 10% and 20% PEG) based on CRD in three replications in 2017. After applying treatments and providing them 48 h opportunity to be recovered, the seedlings were subjected to 3 °C for a six days period and 6 h for each day. The results showed that hardening increased cucumber growth under chilling stress. Hardening treatments improved seedlings’ chlorophyll content, chlorophyll a/b ratio, relative water content, proline accumulation, and hydrogen peroxide while reducing electrolyte leakage content. It was not observed a significant difference between cultivars in terms of measured traits. The highest chilling tolerance was obtained by 10 and 20% PEG. Overall, the results of this experiment showed that employing drought and temperature pretreatments are able to mitigate the harmful effects of chilling on cucumber seedlings.

کلیدواژه‌ها [English]

  • Acclimation
  • Hardening
  • Hydrogen peroxide
  • Polyethylene glycol
  • Proline
پیوست، غ، (1388) سبزیکاری، چاپ پنجم، انتشارات دانش پذیر. 577 صفحه.   
جوانمردی، ج. (1388) مبانی علمی و عملی تولید نشای سبزی. انتشارات جهاد دانشگاهی مشهد، 256 صفحه.
حسن‌پور، ج. م.، کافی، م.، میرهادی، م. ج. (1387) اثر تنش خشکی بر عملکرد و برخی خصوصیات فیزیولوژیک جو. مجله علوم کشاورزی ایران: دوره 39، شماره 1، 177-165.
Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment 24(12): 1337-1344.
Ao, P.X., Li, Z. G., Fan, D.M. and Gong, M. (2013) Involvement of antioxidant defense system in chill hardening-induced chilling tolerance in Jatropha curcas seedlings. Acta physiologiae plantarum 35(1): 153-160.
Baninasab, B. (2009) Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Scientia horticulturae 121(2): 144-148.
Banon, S., Ochoa, J., Franco, J.A., Alarcón, J.J. and Sánchez-Blanco, M.J. (2006) Hardening of oleander seedlings by deficit irrigation and low air humidity. Environmental and Experimental Botany 56(1): 36-43.
Bates, L.S., Waldren, R.P. and Teare, I.D. (1973) Rapid determination of free proline for water-stress studies. Plant and soil 39(1): 205-207.
Berova, M., Zlatev, Z. and Stoeva, N. (2002) Effect of paclobutrazol on wheat seedlings under low temperature stress. Bulgarian Journal of Plant Physiology 28(1-2): 75-84.
Dar, M.I., Naikoo, M.I., Rehman, F., Naushin, F. and Khan, F.A. (2016) Proline accumulation in plants: roles in stress tolerance and plant development. In Osmolytes and Plants Acclimation to Changing Environment. Emerging Omics Technologies. Springer India.
De Juan, P., José, I.J. and Manuel, S.D. (1997) Chilling of drought-hardened and non-hardened plants of different chilling-sensitive maize lines changes in water relations and ABA contents. Plant Science 122(1): 71-79.
Dong, X., Bi, H., Wu, G., Ai, X. (2013). Drought-induced chilling tolerance in cucumber involves membrane stabilisation improved by antioxidant system. International Journal of Plant Production 7: 67–80.
FAO. (2016). from http://faostat3.fao.org. Accessed: January 11, 2016.
Gong, M., Chen, B.O, Li, Z.G. and Guo, L.H. (2001) Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. Journal of Plant Physiology 158(9): 1125-1130.
Haldimann, P. (1998) Low growth temperature‐induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. Plant, Cell & Environment 21(2): 200-208.
Hallgren, J. and Oquest, G. (1990) Adaptations to low temperatures. In stress responses in plants: adaptation and acclimation mechanisms. Eds R Alscher and J Cumming. pp. 265-293.
Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J. and Ahmad, A. (2012) Role of proline under changing environments: a review. Plant Signaling & Behavior 7(11): 1456-1466.
Helmy, Y.I., Singer, S.M. and El-Abd, S.O. (1999) Reducing chilling injury by short-term cold acclimation of cucumber seedlings under protected cultivation. In International Symposium Greenhouse Management for Better Yield and Quality in Mild Winter Climates 491: 177-184.
Hoffman, L., DaCosta, M., Ebdon, J.S. and Zhao, J. (2012) Effects of drought preconditioning on freezing tolerance of perennial ryegrass. Environmental and experimental Botany 79: 11-20.
Hossain, M.A., Burritt, D.J. and Fujita, M. (2016) Cross-stress tolerance in plants: molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxification systems. Abiotic Stress Response in Plants. 323-375.
Iseri, Ö.D., Körpe, D.A., Sahin, F.I. and Haberal, M. (2013) Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress. Acta physiologiae plantarum 35(6): 1905-1913.
Joshi, S.C., Chandra, S. and Palni, L.M. (2007) Differences in photosynthetic characteristics and accumulation of osmoprotectants in saplings of evergreen plants grown inside and outside a glasshouse during the winter season. Photosynthetica 45(4): 594-600.
Kalisz, A., Jezdinský, A., Pokluda, R., Sękara, A., Grabowska, A. and Gil, J. (2016). Impacts of chilling on photosynthesis and chlorophyll pigment content in juvenile basil cultivars. Horticulture, Environment, and Biotechnology 57(4): 330-339.
Korkmaz, A., Korkmaz, Y. and Demirkıran, A.R. (2010) Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environmental and Experimental Botany 67(3): 495-501.
Kuznetsov, V.V., Rakitin, V.Y. and Zholkevich, V.N. (1999) Effects of preliminary heat‐shock treatment on accumulation of osmolytes and drought resistance in cotton plants during water deficiency. Physiologia Plantarum 107(4): 399-406.
Li, H.Y., Li, C.G. and Gong, M. (2011) Short-term cold-shock at 1 C induced chilling tolerance in maize seedlings. International Conference of Biology Environment and Chemistry 1: 346-349.
Li, X., Cai, J., Liu, F., Dai, T., Cao, W. and Jiang, D. (2014) Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Functional plant biology 41(7): 690-703.
Li, Z.G. and Gong, M. (2011) Mechanical stimulation-induced cross-adaptation in plants: an overview. Journal of Plant Biology 54(6): 358-364.
Lichtenthaler, H.K. (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynthesis Research 92(2): 163-179.
Maali-Amiri, R., Goldenkova-Pavlova, I.V., Yur’eva, N.O., Pchelkin, V.P., Tsydendambaev, V.D., Vereshchagin, A.G. and Nosov, A.M. (2007) Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium. Russian Journal of Plant Physiology 54(5): 600-606.
Mahajan, S. and Tuteja, N. (2005) Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics 444(2): 139-158.
Michel, B.E., and Kaufmann, M.R. (1973) The osmotic potential of polyethylene glycol 6000. Plant physiology 51(5): 914-916.
Nayyar, H., Bains, T.S. and Kumar, S. (2005) Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environmental and Experimental Botany 54(3): 275-285.
Pardossi, A., Tognoni, F. and Lovemore, S.S. (1987) The effect of different hardening treatments on tomato seedling growth, chilling resistance and crop production in cold greenhouse. In Symposium on Biological Aspects of Energy Saving in Protected Cultivation 229: 371-378.
Rajashekar, C.B. and Panda, M. (2014) Water stress is a component of cold acclimation process essential for inducing full freezing tolerance in strawberry. Scientia Horticulturae 174: 54-59.
Schütz, M. and Fangmeier, A. (2001) Growth and yield responses of spring wheat (Triticum aestivum L. cv. Minaret) to elevated CO2 and water limitation. Environmental Pollution 114(2): 187-194.
Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M. (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 212: 1-26.
Strain, H.H. and Svec, W.A. (1966) Extraction, separation, estimation and isolation of the chlorophylls. The Chlorophylls 1: 22-66.
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. (2002) Agricultural sustainability and intensive production practices. Nature 418: 671-677.
Vinocur, B. and Altman, A. (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology 16(2): 123-132.
Wang, X., Vignjevic, M., Liu, F., Jacobsen, S., Jiang, D. and Wollenweber, B. (2015) Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regulation 75(3): 677-687.
Yang, J., Kong, Q., & Xiang, C. (2009) Effects of low night temperature on pigments, chl a fluorescence and energy allocation in two bitter gourd (Momordica charantia L.) genotypes. Acta physiologiae plantarum 31(2): 285-293.
Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X. and Tan, M. (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid‐induced activation of the mitogen‐activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist 175(1): 36-50.