نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

2 دانش‌آموخته ارشد بیوشیمی، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

3 دانش‌آموخته دکتری فیزیولوژی گیاهی دانشگاه اصفهان

چکیده

مقدمه: یخ زدگی یکی از تنش‌های غیرزیستی است که اثرات زیانباری بر رشد و بهره‌وری گیاهان دارد. این پژوهش به منظور بررسی برخی پاسخ‌های فیزیولوژیکی و بیوشیمیایی دو گیاه زینتی و مقاوم به سرما شامل گل میمونی (Antirrhinum majus) و بنفشه (Viola × wittrockiana) در شرایط تنش یخ‌‌زدگی انجام شد. مواد و روش‌ها: از کمینه دمایی دی‌ماه سه مکان مختلف گلخانه، شهر اصفهان و فریدون‌شهر (به ترتیب دماهای 20، 3- و 11- درجه سانتی‌گراد) جهت اعمال تیمارهای مختلف دمایی بر روی گیاهان 70 روزه کشت شده در گلدان به‌مدت 15روز استفاده شد. نتایج: اگرچه روند تغییرات نسبت کلروفیل a و b در دو گیاه متفاوت بود، اما با افزایش برودت هوا رشد طولی ساقه روند کاهشی داشت بطوری‌که در پایین‌ترین دما، طول ساقه گل میمونی و بنفشه به‌ترتیب 63 و 50 درصد نسبت به گیاهان رشد یافته در دمای 20 درجه سانتی‌گراد کاهش داشت. مقدار ترکیبات فنلی، کربوهیدرات‌های محلول و هیدروژن‌پراکسید روند افزایشی داشت. همچنین افزایش قابل توجهی در فعالیت آنزیم کاتالاز هر دو گیاه و آسکوربات پراکسیداز گل میمونی تحت برودت 11- درجه سانتی‌گراد مشاهده گردید اما فعالیت آنزیم گایاکول پراکسیداز در هیچ یک از سطوح دمای انجماد تغییر معنی‌داری نداشت. بحث: بنابراین به نظر می‌رسد گیاه گل میمونی و بنفشه با بکارگیری سازوکارهای تنظیم اسمزی و با توانایی‌های متفاوت آنزیم‌های آنتی‌اکسیدان، می‌توانند در برابر تنش حاصل از انجماد مقاومت کنندکه نشان‌دهنده راهکارهای مقاومتی متفاوت وابسته به ژنوتیپ آنهاست.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of freezing stress on some physiological and enzymatic responses of Ornamental plant, viola (Viola × wittrockiana) and snapdragon (Antirrhinum majus)

نویسندگان [English]

  • Behrooz Salehi-Eskandari 1
  • Zohre Nasirian Jazi 2
  • Jalil Abbaspour 3

1 Assistant Professor, Department of Biology, Payame Noor University (PNU), Tehran, Iran

2 Graduated from MSc in biochemistry, Department of Biology, Payame Noor University (PNU), Tehran, Iran

3 Graduated from PhD in Plant Physiology, University of Isfahan

چکیده [English]

Introduction: Freezing is one of the abiotic stresses that has harmful effects on plant growth and productivity. This study was performed to investigate some physiological and biochemical responses of two ornamental and cold-resistant plants, including the viola (Viola × wittrockiana) and snapdragon (Antirrhinum majus) under freezing stress. Materials and methods: To apply different temperature treatments on 70-day-old plants, the minimum temperature in January was used in three different places, including the greenhouse, the city of Isfahan and Fereydunshahr (temperatures of 20, 3- and -11 ° C, respectively) for 15 days. Results: Changes in the chlorophyll a/b ratio were differences in the two plants with increasing freezing stress, but shoot length gradually decreased and at the lowest temperature in viola and snapdragon plants were 63 and 50% of their controls (20 °C), respectively. The content of phenolic compounds, soluble carbohydrates and hydrogen peroxide also increased. In addition, a significant increase in catalase activity was observed in both plants under freezing temperatures, while the increase in ascorbate peroxidase activity was significant only in snapdragon at -11 °C. However, no significant change in the activity of guaiacol peroxidase was found in two plants under freezing temperatures. Discussion: Therefore, it seems that snapdragon and violet plants can withstand freezing stress by using osmotic regulation mechanisms as well as different abilities of antioxidant enzymes, which indicate different resistance strategies depending on their genotype.

کلیدواژه‌ها [English]

  • Cold stress
  • Ornamental plants
  • Osmoticum
  • Photosynthesis pigments
Abou‐Shanab, R., J. Angle, T. Delorme, R. Chaney, P. Van Berkum, H. Moawad, Ghanem, K. and Ghozlan, H.  (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytologist 158: 219-224.
Aebi, H. (1983) Catalase. Methods of enzymatic analysis.
Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology  24: 1-15.
Arslan, Ö., Eyidoğan, F. and Ekmekci, Y. (2018) Freezing tolerance of chickpea: biochemical and molecular changes at vegetative stage. Biologia Plantarum 62: 140-148.
Production and scavenging of active oxygen in photosynthesis. Photoinhibition 227-287.
Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F. and Morshedloo, M.R. (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products 135: 311-320.
Chalker-Scott, L. and Fuchigami, L.H. (2018) The role of phenolic compounds in plant stress responses. In: Paul HL (ed) Low temperature stress physiology in crops. CRC Press Inc., Boca Raton, Florida, pp 27–40.
Couée, I., C. Sulmon, Gouesbet, G. and El Amrani, A. (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany 57: 449-459.
Deljou, A., Hosseini-Vasoukolaei, M., Goudarzi, S., Falahatian, S., Mirzaie-Asl, A., Hosseini-Vasoukolaei, N. and Shad, M.A.A. (2016) Differential gene expression in response to cold stress in Viola wittrockiana. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology  97: 87-94.
Ding, Y., Shi, Y. and Yang, S. (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist  222: 1690-1704.
Georgieva, K., Mihailova, G., Gigova, L., Dagnon, S., Simova-Stoilova, L. and Velitchkova, M. (2021) The role of antioxidant defense in freezing tolerance of resurrection plant Haberlea rhodopensis. Physiology and Molecular Biology of Plants 27: 1119-1133.
Guy, C., Kaplan, F., Kopka, J., Selbig, J. and Hincha, D.K. (2008) Metabolomics of temperature stress. Physiologia Plantarum 132: 220-235.
Hajihashemi, S., Brestic, M., Landi, M. and Skalicky, M. (2020) Resistance of Fritillaria imperialis to freezing stress through gene expression, osmotic adjustment and antioxidants. Scientific Reports, 10: 1-13.
Hereme, R., Galleguillos, C., Morales-Navarro, S. and Molina-Montenegro, M.A. (2021) What if the cold days return? Epigenetic mechanisms in plants to cold tolerance. Planta  254: 1-11.
Janda, T., Szalai, G., Leskó, K., Yordanova, R., Apostol, S. and Popova, L.P. (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry  68: 1674-1682.
Kalisz, A., Jezdinský, A., Pokluda, R., Sękara, A., Grabowska, A. and Gil, J. (2016) Impacts of chilling on photosynthesis and chlorophyll pigment content in juvenile basil cultivars. Horticulture, Environment, and Biotechnology 57(4):330-309.
Karimzadeh Soureshjani, H., Nezami, A., Nabati, J., Oskoueian, E. and Ahmadi-Lahijani, M.J. (2022) The Physiological, Biochemical, and Molecular Modifications of Chickpea (Cicer arietinum L.) Seedlings Under Freezing Stress. Journal of Plant Growth Regulation 41(3):1109-1124.
Kaur, S., Gupta, A. K., Kaur, N., Sandhu, J. S. and Gupta, S. K. (2009). Antioxidative enzymes and sucrose synthase contribute to cold stress tolerance in chickpea. Journal of Agronomy and Crop Science, 195(5): 393-397.
Lee, J., Koo, N. and Min, D. B. (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety  3: 21-33.
Li, Z., Wakao, S., Fischer, B.B. and Niyogi, K.K. (2009) Sensing and responding to excess light. Annual Review of Plant Biology  60: 239-260.
Nezami, A., Keykha, A.F., Mousavi, M.J., Izadi, E., Nezami, S., Yousef, S. M. (2011) Effect of freezing stress on viola (Viola gracilis L.) under laboratory conditions. Journal of Agroecology 3(4): 430-438. (In Persian).
Nievola, C.C., Carvalho, C.P., Carvalho, V. and Rodrigues, E. (2017) Rapid responses of plants to temperature changes. Temperature  4: 371-405.
Noto, G. and Romano, D. (1988) Timing of snapdragon (Antirrhinum majus L.) in cold greenhouse cultivation. Acta Horticulturae 246: 175-182.
Oraee, A., Tehranifar, A., Nezami, A., Shoor, M. (2019) Evaluation of biochemical and morphophysiological responses of Viola× wittrockiana to drought and cold stress. Journal of Plant Process and Function 8 (32): 103-120.
Orvar, B.L., Sangwan, V., Omann, F. and Dhindsa, R.S. (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant Journal 23:785-794.
Pearce, R. S. (2001) Plant freezing and damage. Annals of Botany 87: 417-424.
Pfeiffer, T., Štolfa, I., Žanić, M., Pavičić, N., Cesar, V. and Lepeduš, H. (2013) Oxidative stress in leaves of two olive cultivars under freezing conditions. Acta Biologica Hungarica  64: 341-351.
Plewa, M. J., Smith, S. R. and Wagner, E. D. (1991) Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 247: 57-64.
Pouramir-Dashtmian, F., Khajeh-Hosseini, M. and Esfahani, M. (2014) Alleviating harmful effects of chilling stress on rice seedling via application of spermidine as seed priming factor. African Journal of Agricultural Research 9: 1412-1418.
Quan, L.J., Zhang, B., Shi, W.W. and Li, H.Y. (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology 50: 2-18.
Rajput, V.D., Singh, R.K., Verma, K.K., Sharma, L., Quiroz-Figueroa, F.R., Meena, M., Gour, V.S., Minkina, T., Sushkova, S. and Mandzhieva, S. (2021) Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 10: 267.
Rashed Mohassel, M.H., Nezami, A., Bagheri, A., Hajmohammadnia, K. and Bannayan, M. (2009) Evaluation of freezing tolerance of two fennel (Foeniculum vulgar L.) ecotypes under controlled conditions. Journal of Herbs, Spices and Medicinal Plants 15: 131-140.
Rehman, M. and Tanti, B. (2021) Screening of boro rice varieties of Assam, India to estimate their potential resistance to cold and heat stresses. Vegetos 34: 540–554.
Ritonga, F. N. and Chen, S. (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9: 560.
Ruelland, E., M.-N. Vaultier, A. Zachowski, and Hurry, V. (2009) Cold signalling and cold acclimation in plants. Advances in Botanical Research 49: 35-150.
Saleem, M., Fariduddin, Q. and T, Janda. (2021) Multifaceted role of salicylic acid in combating cold stress in plants: a review. Journal of Plant Growth Regulation 40: 464-485.
Salehi-Eskandari, B., Nasirian Jazi, Z., Abbaspour, J. and Daneshmand, F. (2022) Some growth and biochemical changes of viola (Viola × wittrockiana) and snapdragon (Antirrhinum majus) ornamental plants to freezing stress. Journal of Plant Process and Function 11 (48): 249-262   (In Persian)
Sanghera, G.S., Wani, S.H., Hussain, W. and Singh, N.B. (2011) Engineering cold stress tolerance in crop plants. Current Genomics 12: 30.
Sergiev, I., Alexieva, V. and Karanov, E. (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus de L'Academie Bulgare des Sciences 51(3): 121-124.
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. and Zheng, B. (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24: 2452.
Shen, Z.J., Qin, Y.Y., Luo, M.R., Li, Z., Ma, D.N., Wang, W.H. and Zheng, H.L. (2021) Proteome analysis reveals a systematic response of cold-acclimated seedlings of an exotic mangrove plant Sonneratia apetala to chilling stress. Journal of Proteomics 248: 104349.
Siddiqui, K. S. and Cavicchioli, R. (2006) Cold-adapted enzymes. Annual review of biochemistry 75: 403-433.
Siminovitch, D. (1981) Common and disparate elements in the processes of adaptation of herbaceous and woody plants to freezing-a perspective. Cryobiology 18: 166-185.
Solecka, D. (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiologiae Plantarum 19(3): 257-268.
Sofo, A., Scopa, A., Nuzzaci, M. and Vitti, A. (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences 16: 13561-13578.
Tajvar, Y., Ghazvini, R.F., Hamidoghli, Y. and Sajedi, R.H. (2011) Antioxidant changes of Thomson navel orange (Citrus sinensis) on three rootstocks under low temperature stress. Horticulture, Environment, and Biotechnology 52: 576-580.
Thomashow, M. F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Biology 50: 571-599.
Velioglu, Y., Mazza, G., Gao, L. and Oomah, B. (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry 46: 4113-4117.
Walworth, A. E., Song, G.q.  and Warner, R. M. (2014) Ectopic AtCBF3 expression improves freezing tolerance and promotes compact growth habit in petunia. Molecular Breeding  33: 731-741.
Yadav, S. K. (2010) Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development 30: 515-527.
Yu, P., Jiang, N., Fu, W., Zheng, G., Li, G., Feng, B., Chen, T., Ma, J., Li, H., Tao, L. and Fu, G. (2020) ATP hydrolysis determines cold tolerance by regulating available energy for glutathione synthesis in rice seedling plants. Rice 13: 1-16.
Zhang, Y.P., Xu, S., Yang, S.J. and Chen, Y.Y. (2017) Melatonin alleviates cold-induced oxidative damage by regulation of ascorbate–glutathione and proline metabolism in melon seedlings (Cucumis melo L.). The Journal of Horticultural Science and Biotechnology 92: 313-324.
Zhao, C., Lang, Z. and Zhu, J.K. (2015) Cold responsive gene transcription becomes more complex. Trends in Plant Science 20: 466-468