نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، بخش انگل‌شناسی، دانشکده دامپزشکی دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشیار، بخش انگل شناسی دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استاد، بخش بهداشت مواد غذایی دانشگاه شهید چمران اهواز، اهواز، ایران

4 استاد، بخش انگل شناسی دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

مقدوه: از کلر به عنوان یک گندزدای موثر در از بین بردن میکروارگانیسم‌های بیماری‌زا در سیستم تصفیه آب شهری استفاده می‌شود. با این حال مطالعات نشان داده‌اند که Acanthamoeba از منابع آبی مختلف کشورمان علی‌رغم تصفیه جدا می‌شود. در این مطالعه به بررسی اثر غلظت‌های متداول کلر که در سیستم تصفیه آب شهری استفاده می‌شود بر زنده‌مانی Acanthamoeba castellanii و تغییرات فراساختاری ناشی از آن پرداخته شده‌است. روش‌ها: تروفوزوئیت‌ها و کیست‌‌‌‌‌‌‌‌هایAcanthamoeba در زمان‌های مختلف (30 دقیقه، 1 و 2 ساعت) با غلظت‌های مختلف (ppm10-1) هیپوکلریت کلسیم، مواجه شدند. برای بررسی تغییرات فراساختاری تروفوزوئیت آمیب از میکروسکوپ الکترونی نگاره و گذاره استفاده شد. نتایج و بحث: نتایج این مطالعه نشان داد که غلظت‌های متداول کلر قادر به از بین بردن کامل تروفوزوئیت‌ها و کیست‌های A. castellanii نمی‌باشند. همچنین کیست‌ها به غلظت‌های مختلف کلر مقاوم‌تر بوده و در زمان و غلظت برابر کلر، درصد کمتری از کیست‌ها در مواجه با کلر از بین می‌روند. تغییر نفوذپذیری غشای سلولی، کاهش تعداد پاهای کاذب، افزایش میتوکندری، واکوئله شدن سیتوپلاسم و تغییر در شبکه‌ی اندوپلاسمی از تغییرات فراساختاری ایجاد شده در آمیب بود. این مطالعه ضرورت بازنگری دستورالعمل بکارگیری گندزداهایی نظیر کلر را در تصفیه‌ی سیستم آب شهری مطرح می-کند. چرا که علاوه بر بیماری‌زا بودن آمیب، مخزن بودن آن و انتقال عوامل میکروبی حائز اهمیت است.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of chlorine on survival and ultrastructural changes of Acanthamoeba castellanii

نویسندگان [English]

  • Zeinab Asadi 1
  • Somayeh Bahrami 2
  • Mehdi Zarei 3
  • Hossein Hamidinejat 4

1 Ph. D student, Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Associate Professor, Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Professor, Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Professor, Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

Abstract
Introduction: Chlorine is an effective disinfection agent to kill pathogenic microorganisms in the municipal water treatment system. However, despite treatment, studies have shown that Acanthamoeba is isolated from different water sources in Iran. In this study, the effect of standard concentrations of chlorine used in urban water treatment systems was evaluated on the survival of Acanthamoeba castellanii and its ultrastructure.
Materials and methods: Acanthamoeba trophozoites and cysts were exposed to different concentrations (1-10 ppm) of calcium hypochlorite at different times (30 minutes, 1 and 2 hours). Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to study the ultrastructural changes of amoebic trophozoite.
Results: This study showed that conventional chlorine concentrations could not completely eliminate A. castellanii trophozoites and cysts. Cysts were more resistant to different chlorine concentrations and compared to trophozoites, fewer cysts were killed at the same chlorine concentration and exposure time. Alteration of the cell membrane permeability, decrease in the number of pseudopodia, increase in mitochondria, vacuolation of the cytoplasm, and changes in the endoplasmic reticulum were the main ultrastructural changes in the chlorine-treated amoeba.
Conclusion: This study showed that standard chlorine concentrations used as a disinfectant could not eliminate the trophozoites and cysts of A. castellanii. Due to the pathogenicity of the amoeba and its role as the reservoir and transmission of microbial agents, revising the guidelines for using disinfectants such as chlorine in the treatment of urban water systems is highlighted by this study.

کلیدواژه‌ها [English]

  • Acanthamoeba castellanii
  • Chlorine
  • Survival
  • Ultrastructural changes
 
Albrich. J.M., Gilbaugh 3rd. J.H., Callahan. K.B. and Hurst J.K. (1986). Effects of the putative neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli. The Journal of Clinical Investigation 78: 177– 184.
Albrich. J.M., Hurst. J.K. (1982). Oxidative inactivation of Escherichia coli by hypochlorous acid. Rates and differentiation of respiratory from other reaction sites. FEBS Letters 144: 157–161.
Badirzadeh. A., Niyyati. M., Babaei. Z., Amini. H., Badirzadeh. H. and Rezaeian. M. (2011). Isolation of free-living amoebae from Sarein hot springs in Ardebil province, Iran. Iranian Journal of Parasitology 6(2): 1-8.
Bagheri. H.R., Shafiei. R., Shafiei. F. and Sajjadi. S.A. (2010). Isolation of Acanthamoeba spp. from drinking waters in several hospitals of Iran. Iranian Journal of Parasitology 5(2): 19-25.
Castellani.  A. (1930). An amoeba found in cultures of a yeast: preliminary note. American Journal of Tropical Medicine and Hygiene 33:160.
Dunnick. J.K., Melnick. R.L. (1993). Assessment of the carcinogenic potential of chlorinated water: experimental studies of chlorine, chloramine, and trihalomethanes. Journal of National Cancer Institut 85: 817-822.
Eftekhar. M., Athar. A., Haghighi. A., Mosaffa. N., Shahram. F. and et al. (2010). Seroprevalence of Acanthamoeba antibodies in rheumatoid arthritis patients by IFAT, Tehran, Iran, 2007. Iranian Journal of Parasitology 5(1): 35-40.
Eydi Shehni. G. (2018). Molecular detection and phylogenetic analysis of Acanthamoeba and Balamuthia from water resources of Khuzestan province [ dissertation]. Ahvaz Iran: Shahid Chamran Unive.
Fatimah. H., Nakisah. m. (2013). Visualization on the effect of chlorhexidine gluconate, a biocide on Acanthamoeba sp by electron microscopy. Malaysian Journal of Microscopy 9: 154–159.
Ferri. K. F., Kroemer. G. (2001). Mitochondria the suicide organelles. Bioassays 23: 111 -115.
 
Heaselgrave. W., Shama. G., Andrew. P.W. and Kong. M.G. (2016). Inactivation of Acanthamoeba spp. and other ocular pathogens by application of cold atmospheric gas plasma. Environmental Microbiology 82(10):3143-3148.
Juárez. MM., Tártara L.I., Cid. A.G., Real. J.P., Bermudez. J.M., Rajal. V.B and et al. (2018). Acanthamoeba in the eye, can the parasite hide even more latest developments on the disease. Contact Lens & Anterior Eye Journals 41:245–251.
Karamati. S.A., Niyyati. M., Lorenzo-Morales. J. and Lasjerdi. Z. (2016). Isolation and molecular characterization of Acanthamoeba genotypes isolated from soil sources of public and recreational areas in Iran. Acta Parasitologica 61(4):784-9.
Khan. N.A. (2008). Acanthamoeba and the blood-brain barrier: the breakthrough. Journal of Medical Microbiology 57: 1051-1057.
Korn. E., Dearborn. D. and Wright. P. (1974). Lipophosphonoglycan of the plasma membrane of Acanthamoeba castellanii. Isolation from whole amoeba and identification of the water-soluble products of acid hydrolysis. Journal of Biological Chemistry 249: 3335- 3341.
Król-Turmińska. K. and Olender. A. (2017). Human infections caused by free-living amoebae. Annals of Agricultural and Environmental Medicine 24(2): 254–260.
Lekkla. A., Sutthikornchai. C., Bovornkitti. S. and Sukthana. Y. (2005). Free-living ameba contamination in natural hot springs in Thailand, The Southeast Asian. Journal of Tropical Medicine and Public Health 36:5.
Loret. J.F., Greub. G. (2010). Free-living amoebae: biological by-passes in water treatment. International Journal of Hygiene and Environmental Health 213:167–175.
Mahmoudi. M.R., Taghipour. N., Eftekhar. M., Haghighi. A. and Karanis P. (2012). Isolation of Acanthamoeba species in surface waters of Gilan province-north of Iran. The Journal Parasitology Research 110(1): 473-477.
Maillard. J.Y. (2004). Principles and practice of disinfection, preservation, and sterilization,5nded. A John Wiley & Sons, Ltd., Publication 589Pp. New York NY.
McKelvie. J., Alshiakhi. M., Ziaei. M. and et al. (2018). The rising tide of Acanthamoeba keratitis in Auckland, New Zealand: a7-year review of presentation, diagnosis and outcomes (2009–2016). Clinical and Experimental Ophthalmology 46: 600–607.
Mogoa. E., Bodet. C., Legube. B. and Hechard. Y. (2010). Acanthamoeba castellanii: Cellular changes induced by chlorination. Experimental Parasitology 126: 97–102.
Nazar. M., Haghighi. A., Niyyati. M., Eftekhar. M., Tahvildar Biderouni. F., Taghipour. N. and et al. (2011). Genotyping of Acanthamoeba isolated from water in recreational areas of Tehran, Iran. Journal of Water and Health 9(3): 603-608.
Neff. R.H. (1962). The biochemistry of amoebic encystment. Symposia of Society Experimental Biology   23:51-81.
Niyyati. M., Lasjerdi. Z., Nazar. M., Haghighi. A. and Nazemalhosseini Mojarad. E. (2012). Screening of recreational areas of rivers for potentially pathogenic free-living amoebae in the suburbs of Tehran, Iran. Journal of Water and Health 10(1): 140-146.
Niyyati. M., Naghahi. A., Behniafar. H. and Lasjerdi. Z. (2018). Occurrence of free-living amoebae in nasal swaps of patients of intensive care unit (ICU) and critical care unit (CCU) and their surrounding environments. Iranian Journal of Public Health 4 (6):908.
Rubin. RW., Hill. MC., Hepworth. P. and Boehmer. J. (1976). Isolation and electrophoretic analysis of nucleoli, phenol-soluble nuclear proteins, and outer cyst walls from Acanthamoeba castellanii during encystations initiation. Journal of Cell Biology 68:740-751.
Thomas. V., McDonnell. G., Denyer. SP. and Maillard. J.Y. (2010). Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiology Reviews 34(3):231-59.
Weisman. R.A. (1976). Differentiation in Acanthamoeba castellanii. Annual Review Microbiology 30:189-219.
Zarei. M., Ghahfarokhi. ME., Fazlara. A. and Bahrami. S. (2019). Effect of the bacterial growth phase and coculture conditions on the interaction of Acanthamoeba castellanii with Shigella dysenteriae, Shigella flexneri, and Shigella sonneiJournal of Basic Microbiology 59(7): 735-743.