نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

2 دانشیار گروه زیست شناسی، دانشگاه شهید باهنر کرمان، کرمان، ایران

3 دانشجوی دکترای ژنتیک، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

مقدمه: پتانسیل مثبت براسینواستروئیدها و پلی آمین ها به عنوان عوامل محافظ برای تنش‌های محیطی ثابت شده است. روش‌ها: در این پژوهش، گیاه Cucurbita pepoبا 24-اپی‌براسینولید (EBL)(0، 01/0 و 1/0 میکرومولار) و اسپرمین (Spm) (0 و 1/0 و 1 میلی‌مولار) پیش‌تیمار شد و سپس تیمار شوری (0، 40 و 80 میلی‌مولار سدیم کلرید)، اعمال شد. نتایج و بحث: تنش شوری، وزن خشک، مقدار پتاسیم و کلسیم را کاهش و محتوای سدیم را افزایش داد. EBL و Spmمنجر به افزایش پتاسیم، کلسیم و کاهش سدیم اندام هوایی شد. تنش شوری بیان ژن SOS1 ریشه را افزایش داد و اثری بر بیان ژن NHX1 نداشت. EBL و Spm بیان ژن SOS1 را کاهش داد در حالی‌که Spm بیان ژن NHX1 را افزایش داد؛ بنابراین به‌نظر می‌رسد Spm از طریق بیش‌بیان ژن NHX1 و کده‌بندی یون Na+ اضافی به ‌درون واکوئل و حفظ محیط مطلوب‌تر منجر به افزایش مقاومت به تنش شوری و بهبود رشد گیاه می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of pretreatment of Epibracinolide and Spermine on some growth, physiological parameters and SOS1 and NHX1 gene expression in Pumpkin (Cucurbita pepo L.) under salinity stress

نویسندگان [English]

  • Fatemeh Nejad-Alimoradi 1
  • Fatemeh Nasibi 2
  • Mahboobeh Sheikhbahaei 3

1 Assistant Professor, Department of Biology, Payam Noor University, Tehran, Iran

2 Associate Professor, Department of Biology, Shahid Bahonar University of Kerman, Kerman, Iran

3 PhD student in Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

چکیده [English]

Introduction: The positive potential of brassinosteroids and polyamines as protective agents for environmental stresses has been proven. Methods: In this study, Cucurbita pepo was pretreated with 24-epibrasinolide (EBL) (0, 0.01 and 0.1 μM) and spermine (0, 0.1 and 1 mM) and then salinity treatment (0, 40 and 80 mM sodium chloride) was applied. Results and discussion: Salinity stress decreased dry weight, potassium and calcium content and increased sodium content. EBL and Spm increased potassium, calcium and decreased sodium in shoots. Salinity stress increased root SOS1 gene expression and had no effect on NHX1 gene expression. EBL and Spm decreased expression of SOS1 gene while Spm increased expression of NHX1 gene. Therefore, it seems that Spm via the over-expression of the NHX1 gene substantially increased the tolerance to stress by sequestering excess Na+ into the vacuoles and sustaining a better cellular environment for improvement of plant growth under salinity stress.

کلیدواژه‌ها [English]

  • : Polyamine
  • Plant growth regulator
  • Osmotic stress
  • Sodium transporter gene
 
Apse, M.P., Aharon, G.S., Snedden, W.A. and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258.
Barragán, V., Leidi, E.O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J.A., Cubero, B. and Pardo, J.M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell 24: 1127-1142.
Bassil, E., Ohto, M.-a., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T. and Blumwald, E. (2011). The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. The Plant Cell 23: 224-239.
Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology 12: 431-434.
Clouse, S.D. (2011). Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell 23: 1219-1230.
Çoban, Ö. and Baydar, N.G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Industrial Crops and Products 86: 251-258.
Ding, H.-D., Zhu, X.-H., Zhu, Z.-W., Yang, S.-J., Zha, D.-S. and Wu, X.-X. (2012). Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum 56: 767-770.
dos Santos, L.A., Batista, B.L. and Lobato, A.K.d.S. (2021). 24-Epibrasinolide delays chlorophyll degradation and stimulates the photosynthetic machinery in magnesium-stressed soybean plants. Journal of Plant Growth Regulation 1-16. https://doi.org/10.1007/s00344-00021-10539-00344.
Fariduddin, Q., Mir, B.A., Yusuf, M. & Ahmad, A. (2013). Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiologiae Plantarum 35: 2037-2053.
Fariduddin, Q., Yusuf, M., Ahmad, I. and Ahmad, A. (2014). Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum 58: 9-17.
Farzi-Aminabad, R., Ghassemi-Golezani, K. and Nasrullahzadeh, S. (2021). Grain and oil yields of safflower (L.) Affected by water deficit and growth regulators. Agriculture (Pol'nohospodárstvo) 67: 87-94.
Gálvez, F.J., Baghour, M., Hao, G., Cagnac, O., Rodríguez-Rosales, M.P. and Venema, K. (2012). Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiology and Biochemistry 51: 109-115.
Grattan, S. and Grieve, C. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae 78: 127-157.
Gupta, B. and Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 2014: 1-18.
Hasegawa, P.M. (2013). Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92: 19-31.
Hasegawa, P.M., Bressan, R.A., Zhu, J.-K. and Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology 51: 463-499.
Hauser, F. and Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment 33: 552-565.
Hussain, S.S., Ali, M., Ahmad, M. and Siddique, K.H. (2011). Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances 29: 300-311.
Karlidag, H., Yildirim, E. and Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria× ananassa). Scientia Horticulturae 130: 133-140.
Kohli, S.K., Bali, S., Tejpal, R., Bhalla, V., Verma, V., Bhardwaj, R., Alqarawi, A., Abd_Allah, E.F. and Ahmad, P. (2019). In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-Epibrassinolide and salicylic acid. Scientific Reports 9: 1-15.
Liu, C., Li, C., Liang, D., Wei, Z., Zhou, S., Wang, R. and Ma, F. (2012). Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species. Plant Physiology and Biochemistry 58: 159-165.
Liu, J.-H., Kitashiba, H., Wang, J., Ban, Y. and Moriguchi, T. (2007). Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology 24: 117-126.
Lohaus, G., Hussmann, M., Pennewiss, K., Schneider, H., Zhu, J.J. and Sattelmacher, B. (2000). Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. Journal of Experimental Botany 51: 1721-1732.
 
Manghwar, H., Hussain, A., Ali, Q. and Liu, F. (2022). Brassinosteroids (BRs) Role in plant development and coping with different stresses. International Journal of Molecular Sciences 23: 1012-1027.
Mohammadi, H., Akhondzadeh, M. and Hatami, M. (2021). Exogenously applied 24-Epibrassinolide modulates physiological and biochemical constituents in lavender (Lavandula angustifolia) plants under drought stress conditions. Agriculture & Forestry/Poljoprivreda i Sumarstvo 67: 103-120.
Morillon, R., Catterou, M., Sangwan, R.S., Sangwan, B.S. and Lassalles, J.-P. (2001). Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta 212: 199-204.
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment 25: 239-250.
Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist 167: 645-663.
Munns, R., James, R.A. and Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57: 1025-1043.
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681.
Müssig, C. (2005). Brassinosteroid-promoted growth. Plant Biology 7: 110-117.
Olias, R., Eljakaoui, Z., Li, J., De Morales, P.A., Marin‐Manzano, M.C., Pardo, J.M. and Belver, A. (2009). The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell & Environment 32: 904-916.
Pandey, D., Goswami, C. and Kumar, B. (2003). Physiological effects of plant hormones in cotton under drought. Biologia Plantarum 47: 535-540.
Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349.
Pottosin, I. and Shabala, S. (2014). Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Frontiers in Plant Science 5: 154.
Rasool, A., Shah, W.H., Mushtaq, N.U., Saleem, S., Hakeem, K.R. and ul Rehman, R. (2022). Salinity-induced changes on different physiological and biochemical features of plants. Plant Abiotic Stress Physiology. Apple Academic Press, pp. 201-224.
Rodríguez-Rosales, M.P., Gálvez, F.J., Huertas, R., Aranda, M.N., Baghour, M., Cagnac, O. and Venema, K. (2009). Plant NHX cation/proton antiporters. Plant Signaling & Behavior 4: 265-276.
Sambrook, J. (2001). Molecular cloning: a laboratory manual/Joseph Sambrook, David W. Russell. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Shabala, S. and Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum 133: 651-669.
Shabala, S., Cuin, T.A. and Pottosin, I. (2007). Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Letters 581: 1993-1999.
Shi, H., Ishitani, M., Kim, C. and Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences 97: 6896-6901.
Shi, H., Quintero, F.J., Pardo, J.M. and Zhu, J.-K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14: 465-477.
Siddiqui, M.H., Al‐Whaibi, M.H., Faisal, M. & Al Sahli, A.A. (2014). Nano‐silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry 33: 2429-2437.
Silva, C., Martinez, V. and Carvajal, M. (2008). Osmotic versus toxic effects of NaCl on pepper plants. Biologia Plantarum 52: 72-79.
Sudhir, P. & Murthy, S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42: 481-486.
Sun, Y., Veerabomma, S., Abdel-Mageed, H.A., Fokar, M., Asami, T., Yoshida, S. & Allen, R.D. (2005). Brassinosteroid regulates fiber development on cultured Cotton ovules. Plant and Cell Physiology 46: 1384-1391.
Wu, C.-A., Yang, G.-D., Meng, Q.-W. & Zheng, C.-C. (2004). The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant and Cell Physiology 45: 600-607.
Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, T., Michael, A. and Kusano, T. (2006). The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Letters 580: 6783-6788.
Yamaguchi, T. and Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science 10: 615-620.
Zahran, H.H., Marín‐Manzano, M.C., Sánchez‐Raya, A.J., Bedmar, E.J., Venema, K. and Rodríguez‐Rosales, M.P. (2007). Effect of salt stress on the expression of NHX‐type ion transporters in Medicago intertexta and Melilotus indicus plants. Physiologia Plantarum 131: 122-130.
Zepeda-Jazo, I., Shabala, S., Chen, Z. and Pottosin, I.I. (2008). Na+-K+ transport in roots under salt stress. Plant Signaling & Behavior 3: 401-403.
Zhang, N., Shi, X., Guan, Z., Zhao, S., Zhang, F., Chen, S., Fang, W. and Chen, F. (2016). Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage. Plant Physiology and Biochemistry 105: 260-270.
Zheljazkov, V.D. and Nielsen, N.E. (1996). Effect of heavy metals on peppermint and cornmint. Plant and soil 178: 59-66.
Zhou, Y., Diao, M., Chen, X., Cui, J., Pang, S., Li, Y., Hou, C. and Liu, H.-y. (2019). Application of exogenous glutathione confers salinity stress tolerance in tomato seedlings by modulating ions homeostasis and polyamine metabolism. Scientia Horticulturae 250: 45-58.
Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science 6: 66-71.