نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار میکروبیولوژی صنعتی گروه علوم زیستی، دانشکده علوم پایه، دانشگاه کردستان، کردستان، سنندج، ایران

2 دانشجوی کارشناسی ارشد ، میکروبیولوژی صنعتی گروه علوم زیستی، دانشکده علوم پایه، دانشگاه کردستان، کردستان، سنندج، ایران

چکیده

مقدمه: این مطالعه با هدف جداسازی و شناسایی باکتری های مقاوم به نقره و بررسی پتانسیل آنها در سنتز نانوسولفید نقره انجام شد. روشها: بررسی اولیه بیوسنتز نانوذرات سولفید نقره از طریق مشاهدات چشمی و بررسی طیف‌های جذبی اسپکتروفتومتری مرئی ماورای بنفش انجام شد. آنالیز میکروسکوپ الکترونی روبشی مجهز به پرتوایکس پاشندۀ با هدف بررسی اندازه، شکل نانوذره و آنالیز عنصری انجام شد. به منظور تعیین گروههای عاملی دخیل در احیای زیستی سولفات نقره به نانوسولفید نقره از طیف سنجی تبدیل فوریه مادون قرمز استفاده شد. نتایج و بحث: براساس نتایج، سویه‌ی باکتریGMS10 Bacillus safensis با بالاترین مقاومت نسبت به سولفات نقره (5 میلی مولار)، قادر به سنتز نانوذرات سولفید نقره کروی شکل با متوسط اندازه‌ی 2/22 نانومتر در غلظت 1 میلی مولار سولفات نقره تحت شرایط بهینه 15 گرم در لیتر زیست توده و 36 ساعت گرماگذاری بود. این مطالعه نخستین گزارش از سنتز سبز نانوذرات سولفید نقره در باکتری B. safensis است.

کلیدواژه‌ها

عنوان مقاله [English]

Green synthesis and characterization of silver sulfide nanoparticles using Bacillus safensis strain GMS10 isolated from contaminated soil of gold mine

نویسندگان [English]

  • Morahem Ashengroph 1
  • Sina Daj 2

1 Associate Professor of Industrial Microbiology, Department of Biological Sciences, Faculty of Basic Sciences, University of Kurdistan, Kurdistan, Sanandaj, Iran

2 Master's student, Industrial Microbiology, Department of Biological Sciences, Faculty of Basic Sciences, University of Kurdistan, Kurdistan, Sanandaj, Iran

چکیده [English]

Introduction: This study aimed to isolate and identify the silver-resistant bacteria and investigation on their potential in the biological synthesis of silver sulfide nanoparticles (Ag2SNPs). Methods: Preliminary characterization of the Ag2SNPs was carried out using visual observations and UV–Visible spectroscopy. Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) was used to determine size, morphology, and elemental analysis of the nanoparticles. Fourier-transform infrared spectroscopy (FTIR) analysis was performed to determine the functional groups that are involved in the bioreduction of silver sulfate into Ag2SNPs. Results and discussion: Based on the results, Bacillus safensis strain GMS10 with highest tolerance to silver sulfate (50 mM) was able to synthesize spherical shape of Ag2SNPs with an average size diameter of 22.2 nm under optimized conditions (1 mM silver sulfate, 15 g/L biomass) after 36 hours incubation. This study is the first report on the synthesis of Ag2SNPs using B. safensis.

کلیدواژه‌ها [English]

  • B. safensis
  • Biosynthesis
  • Characterization
  • Silver sulfide nanoparticle
  • Soil
Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H. and Momenbeik, F. (2012). Conversion of isoeugenol to vanillin by                      Psychrobacter sp. strain CSW4. Applied Biochemistry and Biotechnology, 166: 1–12 
Ashengroph, M. (2014). Extracellular synthesis of silver nanoparticles by Ralstonia sp. SM8 isolated from the    sarcheshmeh copper mine. Biological Journal of Microorganisms, 3: 53-64 [Article in Persian]
Ashengroph, M. and Arjmand, R. (2016) Potential of Candida tropicalis strain se29w isolated from waste rubber plant for the bioremediation of the toxic selenite (SeO3-2). Research Bulletin of Medical Sciences (Pejouhandeh), 21: 40-51 [Article in Persian]
Ashengroph, M. and Hosseini, S. R. (2021) A newly isolated Bacillus amyloliquefaciens SRB04 for the synthesis of selenium nanoparticles with potential antibacterial properties. International Microbiology, 24: 103–114.
Ashengroph, M. and Muhtasam Zorab, M. (2022) Investigating green synthesis of copper nanoparticles using the bacterium Pseudomonas grimontii, their characterization, and antibacterial activity. Biological Journal of Microorganism, 11: 61-79 [Article in Persian]
 
Awwad, A. M., Salem, N. M., Aqarbeh, M. M. and Abdulaziz, F. M. (2020). Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chemistry International, 6: 42-48
Bansal, P., Kaur, P., Kumar, P., Surekha, A. and Duhan, J. S. (2017). Biogenesis of silver nanoparticles using Aspergillus terreus, its cytotoxicity and potential as therapeutic against humanpathogens. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8: 898-906
Bereswill, S., Bugert, P., Bruchmüller, I. and Geider, K. (1995). Identification of the fire blight pathogen, Erwinia amylovora, by PCR assays with chromosomal DNA. Applied and Environmental Microbiology, 61: 2636-2642
Bolbanabad, E. M., Ashengroph, M. and Darvishi, F. (2020). Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity. Process Biochemistry, 94: 319-328
Chen, M. and Gao, L. (2006). Synthesis of leaf-like Ag2S nanosheets by hydrothermal method in water–alcohol homogenous medium. Materials Letters, 60: 1059-1062
Debabov, V. G., Voeikova, T. A.,  Shebanova, A. S., Shaitan, K. V., Emel’yanova, L. K., Novikova, L. M. and Kirpichnikov, M. P. (2013). Bacterial synthesis of silver sulfide nanoparticles. Nanotechnologies in Russia, 8: 269-276
Delgado-Beleño, Y., Martinez-Nuñez, C. E., Cortez-Valadez, M., Flores-López, N. S. and Flores-Acosta, M. (2018). Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Materials Research Bulletin, 99: 385-392
Ghotekar, S., Pagar, K., Pansambal, S., Murthy, H. A. and Oza, R. (2021). Biosynthesis of silver sulfide nanoparticle and its applications,” In Handbook of Greener Synthesis of Nanomaterials and Compounds (pp. 191-200). Elsevier
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. and Williams, S.T. (1994). “Bergey's Manual of Determinative Bacteriology, 9nd ed. Baltimore: Williams and Wilkins
Jayanta Kumar, P. and Kwang-Hyun, B. (2014). Green nanobiotechnology: factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014: 1-12
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. and Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 18: 1050-1074
Klaus, T., Joerger, R., Olsson, E. and Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96: 13611-13614
Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870– 1874
Kumar, S., Bhushan, P. and Bhattacharya, S. (2018). Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others,” In: Bhattacharya S., Agarwal A., Chanda N., Pandey A., Sen A. (eds) Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability. Springer, Singapore
Liu, S. H., Qian, X. F., Yin, J., Hong, L., Wang, X. L. and Zhu, Z. K. (2002). Synthesis and characterization of Ag2S nanocrystals in hyperbranched polyurethane at room temperature. Journal of Solid State Chemistry, 168, 259–262
Mansee, T.,  Smital, P. and Niharika, S. (2021). Green synthesis of iron oxide nanoparticles and its biomedical applications. Nanotechnology Applications in Health and Environmental Sciences, 83:109
Sadovnikov, S. I. and Gusev, A. I. (2014). Chemical deposition of nanocrystalline lead sulfide powders with controllable particle size. Journal of Alloys and Compounds, 586: 105–112
Satomi, M., Myron, T., Duc, L. and Venkateswaran, K. (2006). Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. International Journal of Systematic and Evolutionary Microbiology, 56: 1735–1740
Soosani, N., Ashengroph, M. and Chehri, Kh. (2021). Extracellular green synthesis of zinc oxide nanoparticle by using the cell-free extract Rhodotorula pacifica NS02 and investigation of their antimicrobial activities. Nova Biologica Reperta, 8: 195-205 [Article in Persian]
Suresh, A. K., Doktycz, M. J., Wang, W., Moon, J. W., Gu, B., Meyer, H. M. and Pelletier, D. A. (2011). Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta biomaterialia, 7: 4253-4258
Tijjani , M., Norashiqin, M.,  Nur Raihana, I., Abdullahi, M. D. and Ngah, Z. U. (2022). A Review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. International Journal of Environmental Research and Public Health, 19: 674
Weisburg, W. G., Barns, S. M., Pelletier, D. A.  and Lane, D. J.  (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173:697–703
Zhang, C., Zhang, S., Yu, L., Zhang, Z., Zhang, P. and Wu, Z. (2012). Size-controlled synthesis of monodisperse Ag2S nanoparticles by a solvent less thermolytic method. Materials Letters, 85: 77-80