نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا ،گروه میکروبیولوژی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

2 دانشیار ،گروه میکروبیولوژی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

3 استادیار ، گروه زیست‌شناسی، دانشکده علوم، دانشگاه گیلان، رشت، ایران

4 دانشیار ،گروه شیمی، دانشکده علوم دانشگاه گیلان، رشت، ایران

5 استادیاردانشکده علوم پایه دانشگاه آزاد اسلامی واحد رشت ایران

چکیده

مقدمه: استفاده از باکتری‌ها، رویکردی نوین در کاهش آلاینده‌های دارویی است. در این مطالعه، باکتری‌های تجزیه‌کننده اگزالی‌پلاتین از پساب دارویی، جداسازی و شناسایی شدند و قابلیت آنان در کاهش دارو در تیمار‌های یک و چندگونه‌ای بررسی شد. روش‌ها: جداسازی باکتری‌ها به روش فیلتراسیون غشایی انجام پذیرفت و قابلیت کاهش دارو توسط جمعیت‌های یک و چندگونه‌ای با استفاده از HPLC بررسی گردید. نتایج و بحث: پنج گونه با قابلیت کاهش اگزالی‌پلاتین، شامل Enterobacter agglomerans,Citrobacter youngae, Xenorhabdus nematophilis, Bacillus lichineformis, و Moraxella spp شناسایی شدند. باکتری B. lichineformis با کاهش 52 درصدی و E. agglomerans با کاهش 21 درصدی، به ترتیب بیشترین و کمترین قابلیت حذف دارو را نشان دادند. جمعیت باکتریایی شامل B. lichineformis و X. nematophilis و E. agglomerans با کاهش 79 درصدی بهترین عملکرد را در مقایسه با سایر تیمارها داشتند. این مطالعه نشان‌دهنده قابلیت استفاده از باکتری‌های جداسازی شده از پساب دارویی در کاهش آلاینده‌های دارویی می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Isolation of oxaliplatin degrading bacteria from pharmaceutical wastewater for the drug removal using single and multi-species bacterial population

نویسندگان [English]

  • Seyed Reza Garakoui 1
  • Khosro Issazade 2
  • Hojjatolah Zamani 3
  • Roohan Rakhshaee 4
  • Mahdi Shahriarinour 5

1 Msc.Department of Microbiology, Lahijan branch, Islamic Azad University, Lahijan, Iran

2 Associate Professor.Department of Microbiology, Lahijan branch, Islamic Azad University, Lahijan, Iran

3 Assistant Professor . Department of Biology, Faculty of Science, University of Guilan, Iran

4 Associate Professor . Department of Chemistry, Faculty of Science, University of Guilan, Iran

5 Department of Microbiology, Rasht branch, Islamic Azad University, Rasht, Iran

چکیده [English]

Introduction: Owing to the high cytotoxicity, introduction of anticancer pharmaceuticals to the encironment via pharmaceutical and hospital effluents is regarded a major health threat for eukaryotes. Exploring bacterial cells, as prokaryotic organisms, could be a novel approach for the removal of these compounds. Therefore, in this study, we aimed to isolate and identify oxaliplatin degrading bacteria from pharmaceutical wastewater samples and to evaluate their oxaliplatin removal potential as single and multi-species systems.
Materials and Methods: Bacterial isolation was performed using the membrane filtration method and the inhibitory effect of the drug for the isolated bacteria was evaluated in 96-well plates. Finally, oxaliplatin removal efficacy of the single and multi-species bacterial populations was determined using the High-Pressure Liquid chromatography (HPLC).
Results: A total number of five bacterial species, including Enterobacter agglomerans, Citrobacter youngae, Xenorhabdus nematophilis, Bacillus lichineformis and Moraxella spp.able to degrade oxaliplatin were isolated. The highest and least oxaliplatin degrading potential was observed for B. lichiniformis (52%) and E. agglomerans (21%), respectively. Also, the multi-species treatment containing B. lichineformis, X. nematophilis, E. agglomeran showed the highest oxaliplatin removal efficacy (79%).
Conclusion: This work reveals that the bacteria isolated from pharmaceutical effluents could be employed for oxaliplatin removal and could be considered as a novel approach for the reduction of pharmaceutical pollutants.

کلیدواژه‌ها [English]

  • anticancer drugs
  • bioremediation
  • HPLC
  • microbial degradation
Cristóvão. M.B., Janssens. R., Yadav. A., Pandey. S., Luis. P., Van der Bruggen. B., Dubey. K.K., Mandal. M.K., Crespo. J.G. and Pereira. V.J. (2020). Predicted concentrations of anticancer drugs in the aquatic environment: What should we monitor and where should we treat? Journal of hazardous materials 392 (122330). Doi: 10.1016/j.jhazmat.2020.122330 
  Fonseca. T.G., Morais. M.B., Rocha. T., Abessa. D.M.S., Aureliano. M. and Bebianno. M.J. (2017). Ecotoxicological assessment of the anticancer drug cisplatin in the polychaete Nereis diversicolor. Science of the Total Environment 575:162-172. Doi: 10.1016/j.scitotenv.2016.09.185
Gautam. A.K., Kumar. S., Sabumon. P. (2007). Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environment Managment 83(3):672 298-306. Doi: 10.1016/j.jenvman.2006.03.009    
Ghafuria. Y., Yunesian. M., Nabizadeh. R., Mesdaghinia. A., Dehghani. M.H. and Alimohammadi. M. (2018). Environmental risk assessment of platinum cytotoxic drugs: a focus on toxicity characterization of hospital effluents. International Journal of Environmental Science and Technology 15(9):1983-1990. Doi: 10.1007/s13762-017-1517-6 
Grandclément. C., Piram. A., Petit. M. E., Seyssiecq. I., Laffont-Schwob. I., Vanot. G., ... and Doumenq. P. (2020). Biological removal and fate assessment of diclofenac using Bacillus subtilis and brevibacillus laterosporus strains and ecotoxicological effects of diclofenac and 4′-Hydroxy-diclofenac. Journal of Chemistry, 2020.
Heath. E., Filipič. M., Kosjek. T. and Isidori. M. (2016). Fate and effects of the residues of anticancer drugs in the environment. Environmental Science and Pollution Research 23: 14687–14691. Doi: 10.1007/s11356-016-7069-3  
Jureczko. M., and Kalka. J. (2020). Cytostatic pharmaceuticals as water contaminants. European journal of pharmacology 866:172816. Doi: 10.1016/j.ejphar.2019.172816 
Kaya. Y., Bacaksiz. A.M., Bayrak. H., Gönder. Z.B., Vergili. I., Hasar. H. and Yilmaz. G. (2017). Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor (AnMBR) system. Chemical Engineering Journal 322:293-301. Doi: 10.1016/j.cej.2017.03.154
Knopp. G., Prasse. C., Ternes. T.A. and Cornel. P. (2016). Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters. Water Resource 100:580-592. Doi: 10.1016/j.watres.2016.04.069 
Konate. A., Poupon. J., Villa. A., Garnier. R., Hasni‐Pichard. H, Mezzaroba. D., Fernandez. G. and Pocard. M. (2011). Evaluation of environmental contamination by platinum and exposure risks for healthcare workers during a heated intraperitoneal perioperative chemotherapy (HIPEC) procedure. Journal of Surgical Oncology 103(1):6-9. Doi: 10.1002/jso.21740
Mulamattathil. S. G., Bezuidenhout. C., Mbewe, M., and Ateba, C. N. (2014). Isolation of environmental bacteria from surface and drinking water in Mafikeng, South Africa, and characterization using their antibiotic resistance profiles. Journal of pathogens, 2014.
Westman. E.L., Canova. M.J., Radhi. I.J., Koteva. K., Kireeva. I., Waglechner. N., and Wright. G.D. (2012). Bacterial inactivation of the anticancer drug doxorubicin. Chemical Biology 19(10):1255-1264. Doi: 10.1016/j.chembiol.2012.08.011
Yan, A., Culp, E., Perry, J., Lau, J. T., MacNeil, L. T., Surette, M. G., & Wright, G. D. (2018). Transformation of the anticancer drug doxorubicin in the human gut microbiome. ACS infectious diseases, 4(1), 68-76.
   Zamani. H., Rakhshaee. R., and Garakoui. S.R. (2018). Two contrary roles of Fe3O4 nanoparticles on kinetic and thermodynamic of Paclitaxel degradation by Citrobacter amalonaticus Rashtia immobilized on sodium alginate gel beads. Journal of  Hazardous Materrials 344:566-575. Doi: 10.1016/j.jhazmat.2017.10.061
Zhang. L., Hu. J., Zhu. R., Zhou. Q., and Chen. J. (2013). Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Applied Microbiology and Biotechnology 97(8):3687-3698. Doi: 10.1007/s00253-012-4170-5