نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری شیلات، گروه شیلات، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران.

2 استادیار گروه دامپزشکی، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران.

3 استادیار گروه شیلات ، دانشکده دامپزشکی دانشگاه آزاد اسلامی واحد بابل

4 استادیار گروه شیلات، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران

5 استادیار گروه شیلات دانشگاه آزاد اسلامی واحد بابل

10.22051/jab.2021.34652.1404

چکیده

این تحقیق با هدف بررسی اثرات افزایش پروتئین هیدرولیز شده کنجاله کانولا بر فاکتورهای رشد، بیان ژن‌های GH، IGF و گرلین و ترکیب بدن فیل ماهی می‌باشد. به همین منظور تعداد 840 قطعه بچه فیل ماهی با میانگین وزنی 5±30 گرم در 12 تانک 2400 لیتری با تعداد 70 عدد در هر تانک توزیع شدند و با سطوح مختلف 0 (شاهد)، 300 (تیمار 1)، 400 (تیمار 2) و 500 (تیمار 3) میلی‌گرم پروتئین هیدرولیز شده کنجاله کانولا به مدت 8 هفته تغذیه شدند. در پایان دوره پرورش زیست‌سنجی به‌منظور ارزیابی فاکتورهای رشد و نمونه‌برداری از بافت مغز، معده و کبد برای ارزیابی بیان ژن‌های مذکور انجام شد. نتایج نشان داد که با افزایش میزان مصرف پروتئین هیذرولیز شده کنجاله کانولا در جیره میزان افزایش وزن بدن، نرخ رشد ویژه و کارایی پروتئین افزایش یافت و بالاترین مقدار در تیمار 3 (500 میلی‌گرم) بود که اختلاف معنی‌داری با سایر گروه‌ها داشت (P<0.05) همچنین میزان بیان هر 3 ژن نیز روندی افزایشی را نشان داد که اختلاف بین تیمارها با شاهد معنی‌دار بود (P<0.05). و بیشترین میزان بیان برای هر سه ژن در تیمار 500 میلی‌گرم مشاهده شد. در ارتباط با ترکیب شیمیایی بدن نیز کمترین میزان پروتئین در تیمار 3 بود اما در میزان پروتئین، چربی، خاکستر و رطوبت بین شاهد و سایر تیمارها اختلاف معنی‌داری مشاهده نشد (P>0.05). به‌طور کلی پروتئین هیدرولیز شده کانولا می‌تواند عملکرد رشد را در فیل ماهی به‌شکل مثبتی تحت تاثیر قرار دهد.

کلیدواژه‌ها

عنوان مقاله [English]

The effects of hydrolyzed canola meal protein on growth, body composition and expression of growth genes and appetite of beluga fish (Huso huso)

نویسندگان [English]

  • Mahmoudreza Ebrahimnezhadarabi 1
  • Seyed Mehdi Hosseinifard 2
  • Reza Changizi 3
  • Saber Vatandoust 4
  • Shayan Ghobadi 5

1 PhD Student in Fisheries, Department of Fisheries, Babol Branch, Islamic Azad University, Babol, Iran.

2 Assistant Professor, Department of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran.

3 Department of Aquaculture, Faculty of Veterinary, IAU, Babol branch

4 Assistant Professor, Department of Fisheries, Babol Branch, Islamic Azad University, Babol, Iran

5 Assistant ProfessorDepartment of Aquaculture, Islamic Azad University, Babol Branch

چکیده [English]

The aim of this study was to investigate the effects of increasing the hydrolyzed protein of canola meal on growth factors, expression of GH, IGF and ghrelin genes and beluga (Huso huso) juvenile body composition. For this purpose, 840 juveniles beluga with an average weight of 30±5grams were distributed in 12 tanks, 70 in each tank. Each tank has a capacity of 2400 liters. Canola meal hydrolyzed protein was fed with different levels of 0 (control), 300 (treatment 1), 400 (treatment 2) and 500 (treatment 3) mg of protein for 8 weeks. At the end of the breeding period, bioassay was performed to evaluate growth factors and biopsy of brain, stomach and liver tissue to evaluate the expression of these genes. The results showed that with increasing the amount of hydrolyzed protein in canola meal in the diet, body weight gain, specific growth rate and protein efficiency increased and the highest value was in treatment 3 (500 mg) which was a significant difference with other groups(P <0.05). Also, the expression of all 3 genes showed an increasing trend that the difference between treatments and control was significant (P <0.05). The highest expression was observed for all three genes in the 500 mg treatment. The lowest amount of protein was in treatment 3, but there was no significant difference in the amount of protein, fat, ash and moisture between the control and other treatments (P> 0.05). In general, hydrolyzed canola protein can positively affect growth performance in beluga fish.

کلیدواژه‌ها [English]

  • beluga fish
  • hydrolyzed protein
  • gene expression and body chemical composition
Abdel-Tawwab, M.;Ahmad, M. H.;Khattab, Y. A. E. and Shalaby, A. M. E. (2010). Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 298(3): 267-274.
Ahmad, M. (2008). Response of African Catfish, Clarias gariepinus, to Different Dietary Protein and Lipid Levels in Practical Diets. Journal of the World Aquaculture Society, 39: 541-548.
Ahmdifar, E.;Akrami, R.;Ghelichi, A. and Mohammadi Zarejabad, A. (2011). Effects of different dietary prebiotic inulin levels on blood serum enzymes, hematologic, and biochemical parameters of great sturgeon (Huso huso) juveniles. Comparative Clinical Pathology, 20(5): 447-451.
Awad, A. M.;Abd El-Hamid, H. S.;Abou Rawash, A. A. and Ibrahim, H. H. (2010). Detection of reticuloendotheliosis virus as a contaminant of fowl pox vaccines. Poultry Science, 89(11): 2389-2395.
Bertucci, J. I.;Blanco, A. M.;Sundarrajan, L.;Rajeswari, J. J.;Velasco, C. and Unniappan, S. (2019). Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Frontiers in endocrinology, 10: 83-83.
Carter, C. G. and Sajjadi, M. (2011). Low fishmeal diets for Atlantic salmon, Salmo salar L., using soy protein concentrate treated with graded levels of phytase. Aquaculture International, 19(3): 431-444.
Chen, B.;Xiao, W.;Zou, Z.;Zhu, J.;Li, D.;Yu, J. and Yang, H. (2020). Ghrelin gene single nucleotide polymorphisms and their effects on Nile tilapia (Oreochromis niloticus) growth. Aquaculture Reports, 18: 100469.
Collins, S. A.;Øverland, M.;Skrede, A. and Drew, M. D. (2013). Effect of plant protein sources on growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture, 400-401: 85-100.
Delgadin, T. H.;Simó, I.;Pérez Sirkin, D. I.;Di Yorio, M. P.;Arranz, S. E. and Vissio, P. G. (2018). Cichlasoma dimerus responds to refeeding with a partial compensatory growth associated with an increment of the feed conversion efficiency and a rapid recovery of GH/IGFs axis. Aquaculture Nutrition, 24(4): 1234-1243.
Drew, M. D.;Ogunkoya, A. E.;Janz, D. M. and Van Kessel, A. G. (2007). Dietary influence of replacing fish meal and oil with canola protein concentrate and vegetable oils on growth performance, fatty acid composition and organochlorine residues in rainbow trout (Oncorhynchus mykiss). Aquaculture, 267(1): 260-268.
Gui, D.;Liu, W.;Shao, X. and Xu, W. (2010). Effects of different dietary levels of cottonseed meal protein hydrolysate on growth, digestibility, body composition and serum biochemical indices in crucian carp (Carassius auratus gibelio). Animal Feed Science and Technology, 156(3): 112-120.
Hernández, C.;Olmeda-Guerrero, L.;Chávez-Sánchez, M. C.;Ibarra-Castro, L.;Gaxiola-Cortez, G. and Martínez-Cárdenas, L. (2020). Nutritional evaluation of canola meal as fish meal replacement for juvenile spotted rose snapper (Lutjanus guttatus): Effects on growth performance, hematological parameters, body composition, and nutrient digestibility. Animal Feed Science and Technology, 269: 114683.
Jayant, M.;Sahu, N. P.;Deo, A. D.;Gupta, S.;Rajendran, K. V.;Garg, C. K.;Meena, D. K. and Wagde, M. S. (2021). Effective valorization of bio-processed castor kernel meal based fish feed supplements concomitant with oil extraction processing industry: A prolific way towards greening of landscaping/environment. Environmental Technology & Innovation, 21: 101320.
Jönsson, E. (2013). The role of ghrelin in energy balance regulation in fish. General and Comparative Endocrinology, 187: 79-85.
Lemarié, G.;Dosdat, A.;Covès, D.;Dutto, G.;Gasset, E. and Person-Le Ruyet, J. (2004). Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture, 229(1): 479-491.
Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. – Methods 25: 402-408
Mohammadi, M.;Imani, A.;Farhangi, M.;Gharaei, A. and Hafezieh, M. (2020). Replacement of fishmeal with processed canola meal in diets for juvenile Nile tilapia (Oreochromis niloticus): Growth performance, mucosal innate immunity, hepatic oxidative status, liver and intestine histology. Aquaculture, 518: 734824.
Mohseni, M.;Pourali, H. R.;Kazemi, R. and Bai, S. C. (2014). Evaluation of the optimum dietary protein level for the maximum growth of juvenile beluga (Huso huso L.1758). Aquaculture Research, 45(11): 1832-1841.
Nebo, C.;Overturf, K.;Brezas, A.;Dal-Pai-Silva, M. and Portella, M. C. (2017). Alteration in expression of atrogenes and IGF-1 induced by fasting in Nile tilapia Oreochromis niloticus juveniles. International Aquatic Research, 9(4): 361-372.
Ngo, D. T.;Wade, N. M.;Pirozzi, I. and Glencross, B. D. (2016). Effects of canola meal on growth, feed utilisation, plasma biochemistry, histology of digestive organs and hepatic gene expression of barramundi (Asian seabass; Lates calcarifer). Aquaculture, 464: 95-105.
Ostaszewska, T.;Kamaszewski, M.;Grochowski, P.;Dabrowski, K.;Verri, T.;Aksakal, E.;Szatkowska, I.;Nowak, Z. and Dobosz, S. (2010). The effect of peptide absorption on PepT1 gene expression and digestive system hormones in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155(1): 107-114.
Ovissipour, M.;Safari, R.;Motamedzadegan, A. and Shabanpour, B. (2012). Chemical and Biochemical Hydrolysis of Persian Sturgeon (Acipenser persicus) Visceral Protein. Food and Bioprocess Technology, 5(2): 460-465.
Przybył, A.;Mazurkiewicz, J. and Rożek, W. (2006). Partial substitution of fish meal with soybean protein concentrate and extracted rapeseed meal in the diet of sterlet (Acipenser ruthenus). Journal of Applied Ichthyology, 22(s1): 298-302.
Ramena, Y.;Rawles, S. D.;Lochmann, R.;Gaylord, T. G.;McEntire, M. E.;Farmer, B. D.;Baumgartner, W.;Webster, C. D.;Beck, B. H.;Green, B. W. and Barnett, L. M. (2020). Growth, nutrient retention, innate immune response, and intestinal morphology of juvenile, soy-naïve hybrid striped bass, Morone saxatilis x M. chrysops fed commercial-type, soy-based, ideal protein, fish meal replacement diets. Aquaculture, 522: 735150.
Shafaeipour, A.;YAVARI, V.;Falahatkar, B.;Maremmazi, J. G. and Gorjipour, E. (2008). Effects of canola meal on physiological and biochemical parameters in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 14(2): 110-119.
Sissener, N. H.;Hemre, G.-I.;Espe, M.;Sanden, M.;Torstensen, B. E. and Hevrøy, E. M. (2013). Effects of plant-based diets on glucose and amino acid metabolism, leptin, ghrelin and GH-IGF system regulation in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 19(3): 399-412.
Wang, J.;Yan, X.;Lu, R.;Meng, X. and Nie, G. (2017). Peptide transporter 1 (PepT1) in fish: A review. Aquaculture and Fisheries, 2(5): 193-206.
Webster, C. D. and Lim, C. (2002). Nutrient Requirements and Feeding of Finfish for Aquaculture, CABI.
Yarahmadi, P.;Kolangi Miandare, H.;Farahmand, H.;Mirvaghefi, A. and Hoseinifar, S. H. (2014). Dietary fermentable fiber upregulated immune related genes expression, increased innate immune response and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila. Fish & Shellfish Immunology, 41(2): 326-331.
Yıldız, M.;Eroldoğan, T. O.;Ofori-Mensah, S.;Engin, K. and Baltacı, M. A. (2018). The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Re-feeding with fish oil finishing diet improved the fatty acid composition. Aquaculture, 488: 123-133.