نوع مقاله : مقاله پژوهشی

نویسندگان

1 ا ستادیار، گروه زیست شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان، ایرا ن

2 استادیار، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

10.22051/jab.2020.32409.1377

چکیده

سنتز نانوذرات توسط روش سبز، توجه بسیاری را به خود جلب کرده است. در پژوهش حاضر، سنتز نانوذرات اکسید روی توسط عصاره زیتون انجام گرفت. ویژگی مورفولوژیکی و ساختاری نانوذرات اکسید روی سنتز شده توسط اسپکتروفتومتر UV-visible TEM, آنالیز شدند. سپس، اثر نانوذرات اکسید روی در غلظت‌های صفر، 200 و 400 پی‌پی‌ام با پیش‌تیمار کروناتین (صفر و 50 نانومولار) بر پراکسید هیدروژن و مالون دآلدئید و آنزیم‌های کاتالاز (CAT)، آسکوربات پراکسیداز (ASP)، سوپراکسید-دیسموتاز (SOD)، فنیل‌آلانین‌آمونیالیاز (PAL) مورد بررسی قرار گرفت. سنتز نانوذرات اکسید روی توسط عصاره زیتون با ماکزیمم جذب در طول موج 360 نانومتر و تصویر میکروسکوپ عبوری اندازه میانگین ذرات 41 نانومتری را تایید کرد. نانوذرات سنتز شده توسط عصاره زیتون نشان داد که ذرات کروی شکل هستند. بررسی نانوذرات اکسید روی بر گیاه سویا نشان داد که در غلظت 400 پی پی ام نانوذرات اکسید روی فعالیت آنزیم ASP PAL, SOD,، پراکسید هیدروژن و مالون دآلدئید افزایش یافت. مالون دآلدئید در غلظت 200 پی پی ام نانوذرات اکسید روی تغییر معنی داری نسبت به شاهد نداشت اما فعالیت آنزیم SOD افزایش معنی داری نسبت به شاهد نشان داد. پیش تیمار کروناتین باعث بهبود تنش های ایجاد شده در غلظت 200 پی پی ام نانوذرات اکسید روی شد و منجر به کاهش محتوای پراکسید هیدروژن و مالون دآلدئید شد اما کروناتین در غلظت 400 پی پی ام نانوذرات اکسید باعث افزایش این محتوا شد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation the Effect of Coronatine Pretreatment on Stress Zinc Oxide Synthesized by Olive on Soybean plant

نویسندگان [English]

  • shahla hashemi 1
  • Fereshteh Mohamadhasani 2

1 Assistant Professor, Department of Biology, Faculty of Science, Sistan and Baluchestan University, Zahedan, Iran

2 Assistant Professor, Department of Biology, Payame Noor University, Tehran, Iran

چکیده [English]

Green synthesis by plant extract has achieved a growth in interest. In the present study, zinc oxide nanoparticles were synthesized by olive extract.Morphological and structural properties of the synthesized zinc oxide nanoparticles have been characterized using UV-Vis spectrophotometer, TEM analysis. Then, the effect of zinc oxide nanoparticles at concentrations of 0, 200 and 400 ppm with pretreatment coronatine (0 and 50 nM) on the parameters of hydrogen peroxide and malondialdehyde and catalase (CAT) enzymes, ascorbate peroxidase (ASP), superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL) was investigated. Synthesized zinc oxide nanoparticles were confirmed by maximum absorption at wavelength of 360 nm. TEM image revealed that zinc oxide nanoparticles were spherical with average size 41 nm. Investigation of zinc oxide nanoparticles on soybean showed that at concentrations of 400 ppm zinc oxide nanoparticles, enzyme activity of ASP, PAL, SOD, hydrogen peroxide and malondialdehyde increased. The content of malondialdehyde at a concentration of 200 ppm of zinc oxide nanoparticles did not change significantly compared to the control, but the activity of the SOD enzyme increased significantly compared to the control. Pretreatment coronatine improved stress at 200 ppm zinc oxide nanoparticles and reduced the content of hydrogen peroxide and malondialdehyde, but coronatine increased this content at 400 ppm zin oxide nanoparticles.

کلیدواژه‌ها [English]

  • Hydrogen peroxide
  • Coronatine
  • Malondialdehyde
  • Zinc oxide nanoparticles
Abdul Jaleel, C., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, HJ., Chang-Xing, Z., Hong-Bo, S.
& Panneerselvam, R. 2009. Antioxidant defense responses: physiological plasticity in higher plants under
abiotic constrains. Acta Physiol Plant, 31, 427-436 .
Ai, L., Li, Z.H., Xie, Z.X., Tian, X.L., Eneji, A.E. & Duan LS. 2008. Coronatine Alleviates Polyethylene
Glycol-induced Water Stress in Two Rice (Oryza sativa L.) Cultivars. J Agric Crop Sci, 194, 360-36 .
Anderson, & A.J. 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of
oxidative stress in sand-grown wheat. J Nano Res, 14(9), 1–15.
Bar, H., Bhui, D.K. & Sahoo, G.P. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas.
Colloids Surf A, 339,134–139.
Bender, C.L., Alarcon-Chaidez, F. & Gross, D.C. 1999. Pseudomonas syringae phytotoxins: Mode of action,
regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev, 63, 266-292 .
Block, A., Schmelz, E., Jones, J.B. & Klee, H.J. 2005. Coronatine and salicylic acid: the battle between
Arabidopsis and Pseudomonas for phytohormone control. Mol plant pathol, 6(1), 79-83 .
Boonyanitipong ,L. P., Kositsup, B., Kumar, P., Baruah, S. & Dutta, J. 2011. Toxicity of ZnO and TiO2
nanoparticles on germinating rice seed. Int J Biosci Biochem, 1, 282-285 .
Cecilia Barrios, A., Cyren, M., Trujillo-Reyes, J. & Medina-Velo, A. 2015. Effects of uncoated and citric acid
coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants.
Science of the Total Environment, 1-9 .
Cui, X.M., Zhang, Y.K., Wu, X.B. & Liu, CS. 2010. The investigation of the alleviated effect of copper toxicity
by exogenous nitric oxide in tomato plants. Plant Soil Environ, 56 (6), 274-281 .
Dhindsa, R.S., Plumb-Dhindsa, P. & Thrope, T.A. 1981. Leaf senescence: correlated with increased levels of
membrane permeability and lipid per oxidation and decreased levels of superoxide dismutase and catalase.
J Exp Bot, 32(1), 93-101 .
Dimkpa, C.O., McLean, J.E., Latta, D.E., Manangon, E., Britt, D.W., Johnson, W.P., Boyanov, M.I. &
Anderson, A.J. 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of
oxidative stress in sand-grown wheat. J Nanoparticle Res, 14,1–15 .
Dixon, R.A. & Paiva, N.L. 1995. Stress-induced phenyl propanoide metabolism. Plant Cell, 7, 1085-1097 .
Feys, B.J.F., Benedetti, C.E., Penfold, C.N. &Turner, J.G. 1994. Arabidopsis mutants selected for resistance
to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial
pathogen. Plant Cell, 6, 751-759 .
Foltete, A.S., Masfaraud, J.F. & Bigorgne, E. 2011. Environmental impact of sunscreen nanomaterials:
ecotoxicity and gentoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut, 159,2515–2522.
Garg, N. & Singla, P. 2011. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms.
Environ Chem Let. 9, 303-321 .
Giannopolitis, C.N. & Ries, S.K. 1977. Superoxide dismutase. I. occurrence in higher plants. Plant Physiol.
59, 309-314 .
Halliwell, B. 1987. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys
Lipids. 44, 327-340.
Heath, R.L. & packer, L. 1969. Photoperoxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty
acid peroxidation. Arch Biochem Biophys, 125, 189-198 .
Jain, D., Daima, H.K. & Kachhwaha, S. 2009. Synthesis of plant-mediated silver nanoparticles using papaya
fruit extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios, 4,557–563 .
Jung, S. 2004. Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or morflurazon on
antioxidant systems. Plant Physiol Biochem, 42, 225-31 .
Khodakovskaya ,M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F. & Biris, A.S. 2009. Carbon
nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth.
ACS Nano, 3(10), 3221-7 .
Krishnaraj, C., Jagan, E.G. & Ramachandran, S.M. 2010. Effect of biologically synthesized silver nanoparticles
on Bacopa monnieri (Linn.) Wettst. plant growth metabolism .Process Biochem, 47,651–658 .
Kumar, P.K., Paul, W. & Sharma, PC. 2011. Green synthesis of gold nanoparticles with Zingiber officinale
extract: characterization and blood compatibility. Process Chem, 46, 2007–2013.
Kumar, V., Guleria, P., Kumar, V., Yadav, S.K. 2013. Gold nanoparticle exposure induces growth and yield
enhancement in Arabidopsis thaliana. Sci Total Environ, 461,462–468 .
Lee ,C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y., Braam, J. & Alvarez. P.J.J. 2010. Developmental
phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem, 29, 669-675
Lee ,W.M., An, Y.J., Yoon, H. & Kwbon, H.S. 2008. Toxicity and bioavailability of copper nanoparticles to
the terrestrial plants mung bean (Phaseolus radiates) and wheat (Triticum aestivum): plant agar test for
water-insoluble nanoparticles. Environment Toxicology Chemistry, 27,1915-1921 .
Lei, Z., Mingyu, S. & Xiao, W. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts
under UV-B radiation. Biol Trace Elem Res, 121,69–79 .
Lin ,B.S., Diao, S.Q., Li, C.H., Fang, L.J., Qiao, S.C. & Yu, M. 2004. Effects of TMS (nanostructured silicon
dioxide) on growth of Changbai Larch seedlings. J Res, 15,138-140 .
Lin ,D. & Xing, B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.
Environ Pollut, 150, 243-250 .
Maksymiec, W. 2007. Signaling responses in plants to heavy metal stress. Acta Physiol Plant, 29, 177-187 .
Mithofer, A., Maitrejean, M. & Boland W. 2005. Structural and biological diversity of cyclic octadecanoids,
jasmonates, and mimetics. Plant Growth Reg, 23, 170-178.
Nair, P.M.G. & Chung, I.M. 2015. Physiological and molecular level studies on the toxicity of silver
nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiol Plant, 37(1), 1719 .
 Nakano, V. & Asada, K. 1981. Hydrogen Peroxide is scavenged by ascorbate-specific Peroxidase in Spinach
chloroplasts. Plant Cell Physiol, 22, 867-880 .
Nejad, M.S., Khatami, M. & Bonjar, G.H.S. 2016. Extracellular synthesis gold nanotriangles using biomass of
streptomyces microflavus. IET Nanobiotechnol, 10 (1), 33–38.
Pandey ,A. C., Sanjay, S. S. & Yadav, R. S. 2010. Application of ZnO nanoparticles in influencing the growth
rate of Cicer arietinum L. J Exp Nanosci, 5, 488-497 .
Prasad, M.N.V. & Strzatka, K. 2002. Physiology and biochemistry of metal toxicity and tolerance in plants.
(Eds.). Kluwer Academic Publishers, Dordrecht, 15,423- 432.
Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.S.,
Sajanlal, P.R. & Pradeep, T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and
yield of peanut. J Plant Nutr, 35(6),905–927 .
Rajiv, P., Rajeshwari, S. & Venckatesh, R. 2013. Bio-Fabrication of zinc oxide nanoparticles using leaf extract
of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens.
Spectrochim Acta A Mol Biomol Spectrosc, 112, 384–387.
Rao, S. & Shekhawat, G.S. 2015. Toxicity of ZnO engineered nanoparticles and evaluation of their effect on
growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Engin, 2, 105–
114.
Rico, C.M., Hong, J., Morales, M.I., Zhao, L., Barrios, A.C., Zhang, J., Peralta-Videa, J.R., Rico, C.M., Hong,
J. & Morales, M.I. 2013a. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant
defense system and in vivo fluorescence imaging, Environ Sci Technol, 47,5635–5642 .
Roback, J. & Gryglewski, R. 1988. Flavonoids are scavengers of superoxide anions. Biochem Pharma, 37,
837-841 .
Sanchez-Viveros, G., Ferrera-Cerrato, R. & Alarcon, A. 2010. Short term effects of As-induced toxicity on
growth, chlorophyll and Carotenoid contents and total content of phenolic compounds of Azolla filiculoides.
Water Air and Soil Pollut, 217(1-4), 455-462 .
Servin, A. D., Morales, M. I., Castillo-Michel, H., Hemandez-Viezcas, J. A., Munoz, B., Zhao, L. J., Nunez,
J.E., Peralta-Videa, J.R. & Gardea-Torresdey, J. L. 2013. Synchrotron verification of TiO2 accumulation
in Cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ
Sci Technol, 47(20), 11592-11598.
Shaw, A.K. & Hossain, Z. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere,
93,906–915 .
Singh, K., Kumar, S., Rani, A., Gulati, A. & Ahoja, P.S. 2009. Phenylalanine ammonia-lyase (PAL) and
cinnamate 4-hydroxylase (C4H) and catechins (flavon-3-ols) accumulation in tea. Funct Integr Genom,
9(1), 125-134
Solecka, D. 1997. Role of phenyl propanoid compounds in plant responses to different stress factor. Acta
Physiol Plant, 19(3), 257-268.
Sun, B., Jing, Y., Chen, K., Song, L., Chen, F. & Zhang, L. 2007. Protective effect of nitric oxide on iron
deficiency-induced oxidative stress in maize (Zea mays). Plant Physiol, 164, 536-543 .
Tamogami, S. & Kodama, O. 2000. Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.)
in the same manner as jasmonic acid. Phytochem, 54, 689-694.
Velikova, V., Yordanov, I. & Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid raintreated
bean plants. Plant Sci, 151, 59-66 .
Wang, B., Zhaohu, L., Eneji, E., Tian, X., Zhai, Z. Li. J. & Duan, L. 2008. Effects of coronatine on growth,
gas exchange traits, chlorophyll content, antioxidant enzymes and lipid peroxidation in maize (Zea mays
L.) seedling under simulated drought stress. Plant Prod Sci,11, 283-290 .
Wang, H., Kou, X. & Pei, Z. 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial
ryegrass (Lolium perenne L.) and pumpkin (Cucurbita maxima) plants. Nanotoxicology, 5,30–42 .
Wen, P.F., Chen, J.Y., Wan, S.B., Kong, W.F., Zhang, P., Wang, W., Zhan, J., Pan, Q.H. & Hung, W.D. 2008.
Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress.
Plant Growth Reg, 55(1), 1-10.
Xia, T., Kovochich, M. & Liong, M. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium
oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2,2121–2134 .
Yan, Z.F., Wei, J.K. & Zhou, X. 1999. Effects on the resistance water stress for India millet seedling by
coronatine treatment. Chin Agric Sci Bull, 15, 11-14 .
Zhao, L., Peng, B., Hernandez-Viezcas, J.A., Rico, C., Sun, Y., Peralta-Videa, J.R., Tang, X., Niu, G., Jin, L.,
Varela, A., Zhang, J. & Gardea-Torresdey, J.L. 2012. Stress response and tolerance of Zea mays to CeO2
nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano, 6, 9615–9622.
Zhao, Y., Thilmony, R., Bender, C.B, Schaller, A., He, S.Y & .Howe, G.A. 2003. Virulence systems of
Pseudomonas syringae pv .tomato promote bacterial speck disease in tomato by targeting the jasmonate
signaling pathway. Plant J, 36, 485-499.
Zhu, H., Han, J. & Xiao, J.Q. 2008. Uptake, translocation and accumulation of manufactured iron oxide
nanoparticles by pumpkin plants. J Environ Monit, 10,713–717.