نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترادانشکده علوم زیستی، دانشگاه آزاد اسلامی، واحد تهران شمال

2 دانشیار دانشگاه آزاد اسلامی واحد تهران شمال

3 دانشیار دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تهران-شمال

4 دانشیار دانشکده علوم ، دانشگاه آزاد اسلامی واحد علوم و تحقیقات

چکیده

گل‌حسرت Colchicum speciosum گیاهی دارویی غنی از کلشی‌سین و ترکیبات فنلی است. در این مطالعه تاثیر غلظت های مختلف کودهای ازت و نانو ازت بر محتوای ترکیبات فنلی وآلکالوئید کلشی‌سین در بنه گیاهان گل‌حسرت از سه منطقه در استان مازندران (فیل‌بند، کلرد و سنگ‌درکا) بررسی شد. آزمایش با طرح بلوک های تصادفی برای پنج تیمار شامل تیمار شاهد، دو سطح کود ازت (mg/l1/1 و2/2)، دو سطح کود نانو ازت (mg/l5/1 و 3) برای گیاهان سه رویشگاه اجرا شد. سه ماه پس از شروع تیمار، ترکیبات فنلی و آلکالوئید کلشی‌سین بنه استخراج شد. محتوای ترکیبات فنلی با روش اسپکتروفتومتری و کلشی‌سین با HPLC سنجش شدند در گیاهان رویشگاه فیل‌بند همه تیمارهای ازت و نانو ازت موجب افزایش معنی‌دار (P≤0.05 ) محتوای فنل کل بنه شد. استفاده از کودهای ازت و نانو ازت موجب کاهش معنی‌دار محتوای فلاونوئید کل در بنه گیاهان رویشگاه‌های مورد مطالعه شد. کود ازت در همه جمعیت‌ها موجب افزایش معنی‌دار محتوای آنتوسیانین کل بنه شد، در حالی‌که تیمار با کود نانو ازت تاثیر معنی‌دار بر میانگین محتوای آنتوسیانین کل بنه نداشت. مقایسه نتایج میانگین محتوای کلشی‌سین بنه در تیمارهای مختلف نشان داد که کودهای ازت موجب کاهش و کودهای نانو ازت سبب افزایش محتوای کلشی‌سین بنه می‌شوند. نتایج حاضر نشان داد محتوای متابولیتهای مورد مطالعه در بنه رویشگاه‌های مختلف با یکدیگر تفاوت دارند و تاثیر کودهای ازت و نانو ازت برتغییر محتوای این متابولیت‌ها یکسان نیست.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of nitrogen and nano nitrogen fertilizers on corm colchicine and phenolic compounds of Colchicum speciosum from three regions of Mazandaran

نویسندگان [English]

  • Masoud Babaie 1
  • Maryam Peyvandi 2
  • Hossein Abbaspour 3
  • Zahra Noormohammadi 4
  • Sedighe Arbabian 3

1 MSCFaculty of Biological Science, North Tehran Branch, Islamic Azad University

2 Associate Professor,Islamic Azad University, Tehran North Branch

3 Associate Professor,Faculty of Biological Science, Islamic Azad University, Tehran North Branch

4 Associate Professor,Science and Research Branch, Islamic Azad University

چکیده [English]

Colchicum speciosum is a medicinal plant rich in colchicine and phenolic compounds. In this study, the effect of different concentrations of nitrogen and nano-nitrogen fertilizers were investigated on phenols and colchicine accumulation in the corm of C.speciosum from three regions in Mazandaran province (Philband, Kelerd and Sangdarka). Five fertilizer treatments were performed. The results showed that all nitrogen and nano-nitrogen treatments caused a significant increase in corm phenol in the plants of the Philband region. Comparison of the mean flavonoids of plants in three regions in different treatments showed that the use of nitrogen and nano-nitrogen fertilizers has significantly reduced flavonoids in plant corms of all studied plants. The results showed that nitrogen fertilizer (1.1 mg / l) caused a significant increase in corm anthocyanin in all three populations. Nitrogen fertilizer with higher concentration also increased anthocyanin to some extent, while nano-nitrogen at different concentrations did not have a significant effect on the amount of anthocyanin in corm. Comparison of corm colchicine in nitrogen and nano-nitrogen treatments with control showed that nitrogen fertilizers in both concentrations decreased and nano-nitrogen fertilizers increased the amount of corm colchicine. The present results showed that the response of plants collected from the three regions to the different fertilizers was not the same.

کلیدواژه‌ها [English]

  • Colchicum speciosum
  • Nano-Nitrogen
  • Anthocyanin
  • Flavonoid
  • Colchicine
  • Corm
علیرضایی نغندر، مرتضی ، رضازاده شمسعلی، آروئی، حسین و محمود شور ) 1391 (. تأثیر سطوح مختلف کودهای زیستی
تحت شرایط رویشگاه. .Colchicum kotschyi Bioss و شیمیایی ازت بر عملکرد کورم و میزان کلشیسین در گیاه دارویی
فصلنامه گیاهان دارویی، سال یازدهم، دوره دوم، ویژه نامه شماره نه، بهار
موسسه تقیقات جنگلها و مراتع کشور . )Colchiceae( معروفی،حسین ) 1396 (. فلور ایران. شماره 142 :تیره گل حسرت
Aires, A. Rosa, E. and Carvalho, R. ( 2006). Effect of nitrogen and sulfur fertilization on glucosinolates in
the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). Journal of the Science of Food and
Agriculture. ; 86:1512-1516.
Allahdadi Marziyeh and Parisa Farzane. (2018). Influence of different levels of nitrogen fertilizer
on some phytochemical characteristics of artichoke (Cynara scolymus L.) leaves. Journal of Medicinal Plants
Studies; 6(1): 109-115.
Al-Fayyad, M. Alali, F. and Al-Tell, A. (2003). Effect of NPK fertilizer levels on morphological characteristics
and productivity of Colchicum hierosolymitanum and Colchicum tunicatum, Journal of herbs, spices &
medicinal plants, 4: 11-17.
Anne Poutaraud and Philippe Girardin. (2005). Influence of chemical characteristics of soil on mineral and
alkaloid seed contents of Colchicum autumnale. Environmental and Experimental Botany; 54: 101–108.
Arabshahi-Delouee, S. Devi, D.V. and Urooj. (2007). A.Evaluation of antioxidant activity of some plant extracts
and their heat, pH and storage stability. Food Chem; 100: 1100-5.
Awad, M.A. And De Jager, A. (2002). Relationship between fruit nutrients and concentrations of flavonoids
and chlorogenic acid in ‘Elstar’ apple skin. Scientia Horticulturae.; 92:265-276.
Benzon, H.R.L. Rubenecia, M.R.U. Ultra Jr, V.U. and Lee, S.C. (2015). Nano-fertilizer affects the growth,
development, and chemical properties of rice. International Journal of Agricultural Research, 7(1), 105-117.
Bharathi P and Philomina D. (2010). Effect of nutritional factors and precursors on formation of colchicine in
Gloriosa superba in vitro. Res. In Biotechnol.; 1: 29 - 37.
Chang, C. Yang, M. Wen, H. and Chern, J. (2002). Estimation of Total Flavonoid Content in Propolis by Two
Complementary Colorimetric Methods. Food and Drug Analysis; 10: 178-82.
Cojocaru Alexandru, Laurian Vlase , Neculai Munteanu , Teodor Stan , Gabriel Ciprian Teliban, Marian Burducea
and Vasile Stoleru. (2020). Dynamic of Phenolic Compounds, Antioxidant Activity, and Yield of Rhubarb
under Chemical, Organic and Biological Fertilization. Plants, 9, 355; doi:10.3390/plants9030355.
David Pilbeam J. (2015). Handbook of Plant Nutrition, CRC Press, Taylor and Francis Group,New York, NY,
USA.
Desgagné-Penix, I. and Facchini, PJ. (2011). Benzylisoquinoline alkaloid biosynthesis. In: Ashihara H, Crozier A,
Komamine A, editors. Plant Metabolism and Biotechnology. Chichester: John Wiley & Sons. 241-261.
Dewick, P.M. (2001). The shikimate pathway: aromatic amino acids and phenylpropanoids In Medicinal Natural
Products: a Biosynthetic Approach, 2nd ed., pp. 137–186 Dewick PM, editor. Chichester: John Wiley.
Endara, M.-J. Coley, P.D. (2011).The resource availability hypothesis revisited: A meta-analysis. Funct. Ecol. 25,
389–398.
Gholami, T. Peyvandi, M. Abbaspour, H. Noormohammadi, Z.and Sharifnia, F. (2020) Chemical Analysis of
Population Variability in Peganum Harmala (var. Harmala). Acta Botanica Hungarica; 62:205-215
Gowda, B.G.(2014). High-performance liquid chromatographic determination of colchicine in pharmaceutical
formulations and biological fluids. International Journal of Pharmacy and Pharmaceutical Sciences 6(6):335-
337.
Hasanuzzaman Mirza, Masayuki Fujita, Carvalho M.and Thiago A.(2020). Sustainable Crop Production. eBook
(PDF) ISBN: 978-1-83880-899-0.
Ibrahim, M. H. Jaafar, H. Z. Rahmat, A. and Rahman, Z. A. (2010). The relationship between phenolics and
flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth.
under high CO2 and nitrogen fertilization. Molecules (Basel, Switzerland), 16(1), 162–174.
Kiliç Ismail, Yesim Yesiloglu, and Yüksel Bayrak. (2014). Investigation on the Antioxidant Activity of Roots and
Stem of Colchicum turcicum L. Asian Journal of Chemistry; Vol. 26, No. 1, 5-9.
Kumar, A, Sharma, P.R. Mondhe, D.M. (2017). Potential anticancer role of colchicine-based derivatives: an
overview. Anticancer Drugs. Mar;28(3):250-262.
Liu, C. Liu,Y.M. Sun, Q.L. Jiang, C.Y. Liu, S.J. (2015). Unraveling the kinetic diversity of microbial 3-
dehydroquinate dehydratases of shikimate pathway. AMB Express. Feb 1;5:7.
Mansoor, A. (2004). Standardization of plant base medicines. Int. Chem.Pharm. Med. J. 1(2): 87-101.
Liu Ruiqiang and Lal Rattan. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic
productions. Science of The Total Environment Volume 514, 1 May, Pages 131-139.
Marchiosi, R. dos Santos, W.D. Constantin, R.P.and et al. (2020) Biosynthesis and metabolic actions of simple
phenolic acids in plants. Phytochem Rev 19, 865–906. https://doi.org/10.1007/s11101-020-09689-2.
Mehabadi shima and Seyed Morteza Karimiyan. (2018). Morphine Tolerance Effects on Neurotransmitters and
Related Receptors: Definition, Overview and Update. Journal of Pharmaceutical Research International. 23(6):
1-11; Article no. JPRI.41936.
Mohammad Ghasemi Vida ,Sina Siavash Moghaddam, Amir Rahimi ,Latifeh Pourakbar and Jelena Popović-
Djordjević . (2020). Winter Cultivation and Nano Fertilizers Improve Yield Components and Antioxidant
Traits of Dragon’s Head (Lallemantia iberica (M.B.) Fischer & Meyer). Plants , 9(2), 252.
Nogues, S. and Baker, N. R. (2000). Effects of drought on photosynthesis in Mediterranean plant growth under
enhanced UV‐B radiation. Journal of Experimental Botany 51(8): 1309‐1317.
Nordenstam, B. (1998). Colchicaceae. In: Kubitzki, K. (Ed.), The Families and Genera of Vascular Plants. Part III
Flowering Plants, Monocotyledons, Lilianae (except Orchidaceae). SpringerVerlag, Berlin, Heidelberg, New
York, pp. 175–185.
Pettit George R. Noeleen Melody, and Jean-Charles Chapuis. (2020). Antineoplastic Agents. 607.Emetine
Auristatins. J. Nat. Prod. 83, 5, 1571–1576.
Renu Sarin, Anirudha Rishi and Ajit Kumar. (2010). In vivo and In vitro Estimation of Colchicine in Gloriosa
22olchi L. by High Pressure Liquid Chromatography. J. Exp. Sci. 1(4):1-2.
Roggatz, U., McDonald, A. J. Stadenberg, S. I., and Schurr, U. (1999). “Effects of nitrogen deprivation on cell
division and expansion in leaves of Ricinus communis L,” Plant, Cell and Environment, vol. 22, no. 1, pp. 81–
89.
Senizza, B. Rocchetti, G. Okur, M.A. Zengin, G. Yıldıztugay, E. A.k. G. Montesano, D. and Lucini, L. (2020).
Phytochemical Profile and Biological Properties of Colchicum triphyllum (Meadow Saffron). Foods, 9, 457.
Slinkard, K. and Singleton, V.L. (1977). Total phenol analysis; automation and comparison with manual
methods.A.m J. Enol Viticult; 28: 49-55.
Stumpf, B. Yan, F. Honermeier, B.2018( ) Influence of nitrogen fertilization on yield and phenolic compounds in
wheat grains (Triticum aestivum L. ssp. aestivum). Journal of Plant Nutrition and Soil Science; 111-118
Suppan, S. (2013). Nanomaterials in soil: Our future food chain? The institute of agriculture and trade policy,
Minneapolis, MN.
Wan, A. Gao, Q. and Li, H. (2010). Effects of molecular weight and degree of acetylation on the release of nitric
oxide from chitosan–nitric oxide adducts. Journal of Applied Polymer Science; 117:2183-2188.
Wendelbo, P. and Stuart, D. (1985). Colchicum L. In: Townsend CC, Guest (eds). Agriculture and Agrarian
Reform. Baghdad. Republic of Iraq.
Wu, C., Gao, Q. Kjelgren, R.K. Guo, X. and Wang, M. (2013) Yields, phenolic profiles and antioxidant activities
of Ziziphus jujuba Mill. in response to different fertilization treatments Molecules 18: 12029 -12040.
Zhang, E. Duan, Y. Tan, F. and Zhang, S. (2016) Effects of Long-term Nitrogen and Organic Fertilization on
Antioxidants Content of Tomato Fruits. J Hortic 3: 172. doi:10.4172/2376-0354.1000172.