نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم باغبانی، دانشکده تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استاد گروه علوم باغبانی، دانشکده علوم کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

هنوز تأثیر احتمالی نانو ذرات نقره در کمک به فرایند انتقال ژن در گیاه از طریق اگروباکتریوم مورد توجه قرار نگرفته است. در اینجا ما نشان می‌دهیم که رشد اگروباکتریوم در غلظت 10 میکروگرم بر میلی لیتر نانو ذرات نقره هم در شرایط رشد دینامیک و هم محیط کشت جامد LB سرکوب شد اما پس از همکشتی قطعات برگ توتون با A. rhizogenes، کنترل رشد مجدد این باکتری به طور موثری نیازمند غلظت‌های بالاتری از نانو ذرات نقره بود. استفاده از غلظت‌ 150 میکروگرم در میلی لیتر و بالاتر باعث آسیب به بافت برگ می‌گردد و غلظت 100 میکروگرم در میلی لیتر در کنترل کامل باکتری پس از همکشتی موثر عمل نمی‌کند. بدین منظور مصرف همزمان نانو ذرات نقره و سفوتاکسیم با غلظت‌های مختلف مورد بررسی قرار گرفت و مشخص شد که استفاده از 100 میکروگرم در میلی لیتر نانو ذرات نقره به همراه 200 میلی‌گرم در لیتر سفوتاکسیم باعث کمترین آسیب به برگ و بیشترین درصد باززایی می‌شود و این روش کاربرد نه تنها باعث کاهش سمیت عناصر سنگین می‌شود بلکه باعث می‌شود از مصرف غلظت‌های بالای آنتی بیوتیک طی انتقال ژن اجتناب نماییم. نتایج میکروسکوپ الکترونی TEM نشان داد که نانو ذرات نقره می‌تواند رشد اگروباکتریوم را با چسبیدن به دیواره باکتری و نفوذ به درون سلول باکتری و اختلال در کار اندامک‌های مختلف متوقف نمایند. نتایج بدست آمده از این آزمایش می‌تواند راه را برای استفاده از نانو ذرات نقره با قطر‌ کمتر جهت توقف رشد مجدد باکتری طی انتقال ژن در گیاهان مختلف هموار نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Inhibitory effects and mechanism of silver nanoparticles in control of Agrobacterium rhizogenes growth after co-cultivation and genetic transformation in tobacco

نویسندگان [English]

  • Mostafa Khoshhal Sarmast 1
  • hasan Salehi 2

1 Assistant Professor, Department of Horticulture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Professor, Department of Horticulture, Faculty of Agricultural Sciences, Shiraz University, Shiraz, Iran

چکیده [English]

Potential influence of AgNPs on plant genetic transformation through Agrobacterium has not yet been addressed. Here we showed that the growth of Agrobacterium was suppressed in 10 µg/ml AgNPs but controlling the overgrowth of these bacteria would effectively necessitate a higher concentration of AgNPs when tobacco explants have inoculated with A. rhizogenes. Research result indicated that applying more than 150 µg/ml AgNPs and more, resulted in leaf injury and application of 100 µg/ml of AgNPs was unable to suppress bacteria regrowth after co-cultivation with tobacco leaves. The concurrent application of the AgNPs and Cefotaxime with different concentration was investigated and results indicated that using 100 µg/ml of AgNPs along with 200 mg/l of cefotaxime lead to the lowest leaf injury and the highest regeneration potential. This application not only caused a reduction in heavy metal toxicity but also decreases excess concentrations of antibiotics during the course of transformation. TEM manifested that the AgNPs could suppress Agrobacterium growth by potentially anchoring to and penetrating the bacterial cell wall. Our results suggest that the simultaneous use of AgNPs along with Cefotaxime can suppress the overgrowth of Agrobacterium during plant transformation. The result of this experiment can open a new window for application of AgNPs with lower diameter in order to suppress bacteria overgrowth.

کلیدواژه‌ها [English]

  • Agrobacterium rhizogenes. Electron Microscopy
  • Genetic engineering
  • Tobacco
Abdi, Gh., Salehi, H., Khosh-Khui, M. (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiologiae Plantarum, 30: 709–714.
Aghdaei, M., Salehi, H., Sarmast, M. (2012) Effects of silver nanoparticles on Tecomella undulata (Roxb·) Seem, micropropagation. Advances in Horticultural Science 2: 21-24
Arora, S., Jain, J., Rajwade, J.M.,  Paknikar, K.M. (2008) Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, 179: 93–100.
Batarseh, K.I. (2004) Anomaly and correlation of killing in the therapeutic properties of silver (I) chelating with glutamic and tartaric acids. Journal of Antimicrobial Chemotherapy, 54: 546–548.
Benelli, G. (2016) Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases? Asian Pacific Journal of Tropical Biomedicine, 6: 353–354.
Bragg, P.D and  Rannie D J. (1974). The effect of silver ions on the respiratory chain of E. coli. Canadian Journal of Microbiology, 20: 883–889.
Braydich-Stolle, L., Hussain, S., Schlager, J.J., Hofmann, M-C. (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological sciences, 88:412-419
da Silva, J.A.T., Nhut, D.T., Tanaka, M., Fukai, S. (2003) The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Scientia Horticulturae, 97:397-410
Dodds, J., Roberts, L. (1981) Some inhibitory effects of gentamicin on plant tissue cultures. In Vitro 17(6):467-470
Duygu, D.Y., Erkaya, A., Yalcin, B.M. (2019) Characterization of silver nanoparticle produced by Pseudopediastrum boryanum (Turpin) E. Hegewald and its antimicrobial effects on some pathogens. Inter. Env. Sci. Tech. 1-10. doi.org/10.1007/s13762-019-02315-5.
Falkiner, F. (1990) The criteria for choosing an antibiotic for control of bacteria in plant tissue culture. Int. Soc. Plants tiss. Newsletter 60:13-23.
Gupta, S.D., Agarwal, A., Pradhan, S. (2018) Phytostimulatory effect of silver  nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and Environmental Safety, 161: 624–633.
Hoet, P.H., Brüske-Hohlfeld, I., Salata, O.V. (2004) Nanoparticles–known and unknown health risks. Journal of nanobiotechnology, 2(1):12
Klasen, H.J. (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 26: 117–130.
Kumari, A., Vemula, P.K., Ajayan,  P.M.,  John, G. (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Materials, 7: 236–241.
Leifert, C., Waites, B., Keetley, J.W., Wright, S.M., Nicholas, J.R., Waites, W.M. (2000) Effect of medium acidification on filamentous fungi, yeasts and bacterial contaminants in Delphinium tissue cultures. Plant Cell, T issue and Organ Culture, 42: 149–155.
Leifert, C., Cammota, H.,  Waites, W.M. (1992) Effect of combinations of antibiotics on micropropagated Clematis, Delphinium, Hosta, Iris and Photinia. Plant Cell, Tissue and Organ Culture, 29: 153–160.
Marshall, J.P. and  Schneider, R.P. (1977) Systemic argyria secondary to topical silver nitrate. Archives of Dermatological Research, 133: 1077–1079.
Noshad, A., Igbal, M.,   Folkers, L.,  Hetherington, C.,  Khan, A.,  Numan, M.,  Ullah, S. (2019) Antibacterial Effect of Silver Nanoparticles (AgNPs) Synthesized from Trichoderma Harzianum against Clavibacter Michiganensis. Journal of  Nanotechnology Research, 58.10-19
Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473-497.
Ogawa, Y. and Mii, M. (2005) Evaluation of 12 β-lactam antibiotics for AMT through in planta antibacterial activities and phytotoxicities. Plant cell reports, 23:736-743
Parimalan, R.,  Giridhar, P., Ravishankar, G.A. (2011) Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tissue and Organ Culture 105:285–290.
Sarmast, M.K., Niazi, A., Salehi, H., Abolimoghadam, A. (2015) Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell, Tissue and Organ Culture 121(1):227-236
Sarmast, M.K., Salehi, H., Khosh-Khuim M. (2011) Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants. Acta Biologica Hungarica 62(4):477-484
Sarmast, M.K. and Salehi, H. (2016). Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology. Molecular Biotechnology,  58:441–449
Selwyn, S., Lacey, R.W., Bakhtiar, M. (1980) The beta-lactam antibiotics: penicillins and cephalosporins in perspective. Hodder and Stoughton
Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D. (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103
Stange, C., Prehn, D., Arce-Johnson, P. (1998). Isolation of Pinus radiate genomic DNA suitable for RAPD analysis. Plant Molecular Biology Reporter, 16: 1–8.
Teixeira da Silva, G.A., Duong, T., Michi, T., Seiichi, F. (2003). The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Scientia Horticulturae, 97, 397–410.
Thomas, A. and Broadbridge, R. (1972) The nature of carbenicillin resistance in Pseudomonas aeruginosa. Microbiology 70(2):231-241
Tortella, G., Navas, M., Parada, M., Duran, N., Seabra, AB.,  Hoffmann N. (2019) Synthesis of Silver Nanoparticles Using Extract of Weeds and Optimized by Response Surface Methodology to the Control of Soil Pathogenic Bacteria Ralstonia solanacearum. Journal of Soil Science and Plant Nutrition, 19:148-156.
Wang, C., Wang, L., Wang, Y., Liang, Y., Zhang, J. (2012) Toxicity effects of four typical nanomaterials on the growth of Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens. Environmental Earth Sciences  65(6):1643-1649
Wang, F., Cui, X., Sun, Y., Dong, C-H.  (2013a) Ethylene signaling and regulation in plant growth and stress responses. Plant cell reports  32(7):1099-1109
Wang, J., Koo, Y., Alexander, A., Yang, Y., Westerhof, S., Zhang, Q., Schnoor, J.L., Colvin, V.L., Braam, J., Alvarez, P.J. (2013b) Phytostimulation of  poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental science & technology 47(10):5442-5449
Wijnhoven, S.W.P., Peijnenburg, W.J.G., Herberts, C.A., Hagens., W.I., Oomen, A.G., Heugens, E.H.W., (2009)  Nano-silver -a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3:109-138.