نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا ، دانشگاه تهران، پردیس علوم، دانشکده علوم زیستی

2 استاد، دانشگاه تهران، پردیس علوم، دانشکده علوم زیستی

چکیده

در این تحقیق اثر سالیسیلیک‌اسید و پنکونازول به تنهایی و به صورت همزمان بر برخی ویژگی‌های فیزیولوژیکی و مولکولی گلرنگ تحت تنش شوری مورد بررسی قرار گرفت. تیمارهای کلریدسدیم (0، 100 و 200 میلی‌مولار)، سالیسیلیک‌اسید (1mM) و پنکونازول (15mg/l) به مدت 21 روز بر گیاهان اعمال شد. سپس برگ‌های گیاهان جمع‌‌آوری شده و در یخچال در دمای 70- درجه سانتی‌گراد نگهداری شد. نتایج حاصل نشان داد که محتوای پروتئین تحت تنش شوری شدیدتر حدود دو برابر نسبت به گیاهان شاهد کاهش یافت. با اینحال، محتوای پرولین حدود سه برابر و محتوای گلایسین‌بتائین، H2O2، MDA، ترکیبات فنلی کل و فعالیت رادیکال DPPH نیز تقریبا دو برابر نسبت به گیاهان شاهد افزایش یافت. بعلاوه، تنش شوری باعث افزایش بیان ژن‌های SOS1 و NHX1 در گلرنگ شد. تیمارهای سالیسیلیک‌اسید و پنکونازول نیز باعث افزایش محتوای پروتئین، گلایسین‌بتائین، H2O2، ترکیبات فنلی کل، فعالیت رادیکال DPPH و همچنین افزایش بیان ژن‌های SOS1 و NHX1 شدند. همچنین تیمار سالیسیلیک‌اسید باعث کاهش محتوای پرولین و تیمار پنکونازول باعث کاهش MDA در گیاهان تحت تنش شد. در مجموع، نتایج نشان داد که برهمکنش این دو تنظیم‌کننده در گیاه می‌تواند اثرات آنتاگونیست و یا سینرژیست به دنبال داشته باشد. بنابراین، به نظر می‌رسد که این دو تنظیم‌کننده رشد می‌توانند باعث افزایش سازگاری و مقاومت گیاه گلرنگ تحت شرایط تنش شوری شده که با توجه به ارزان و قابل دسترس بودن آنها، جهت افزایش مقاومت گلرنگ به تنش می‌توانند مورد توجه قرار گیرند.

کلیدواژه‌ها

عنوان مقاله [English]

Improving salt resistance of safflower (Carthamus tinctorius L.) through growth regulators: salicylic acid and penconazole

نویسندگان [English]

  • Fatemeh Shaki 1
  • Hasan Ebrahimzadeh Maboud 2
  • Vahid Niknam 2

1 PhD student, University of Tehran, Science Campus, Faculty of Life Sciences

2 Professor, University of Tehran, Science Campus, Faculty of Life Sciences

چکیده [English]

Salinity is one of the most important environmental factor that limits plant growth and its productivity. In addition, salinity has affected a significant part of agricultural lands. Therefore, identifying the methods that reduce the effect of salinity on plants to prevent plant yield loss can be one way to cope with this problem. In this study, the effect of salicylic acid and penconazole was investigated on some physiological and molecular paramethers in safflower under salinity. Sodium chloride (0, 100, 200 mM), salicylic acid (1mM), and penconazole (15mg/l) were applied for 21 days on plants. Results revealed that protein content decreased under salinity while, proline, glycine betaine, H2O2, MDA, phenolics, and DPPH activity increased as well as SOS1 and NHX1 genes expression. Exogenous application of salicylic acid and penconazole increased protein, glycine betaine, H2O2, and phenolic contents, DPPH activity, as well as SOS1 and NHX1 genes expression under salinity. But, proline content decreased by salicylic acid and MDA content decreased by penconazole. Additionally, the results showed that the interaction of these two regulators could have antagonistic or synergist effects in plants. Overall, it seems that the exogenous application of these growth regulators can cause the adaptability of safflower to salinity. Due to the low price and availability, the use of these components can be considered in order to increase the resistance of safflower to salinity.

کلیدواژه‌ها [English]

  • Safflower
  • salinity
  • Salicylic acid
  • Penconazole
  • NHX1 antiporter
  • SOS1 antiporter
زینلی، ا .1378 .گلرنگ  )شناخت تولید و مصرف(، چاپ اول، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
Aftab, T., Khan, M. M. A., da Silva, J. A. T., Idrees, M. & Naeem, M. (2011). Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. Journal of Plant Growth Regulation 30(4): 425-435.
Ali, Y., Aslam, Z., Ashraf, M. & Tahir, G. (2004). Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science & Technology 1(3): 221-225.
Ashraf, M. & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany 59(2): 206-216.
Banu, M. N. A., Hoque, M. A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y. & Murata, Y. (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology 166(2): 146-156.
Bates, L., Waldren, R. & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil 39(1): 205-207.
Berova, M., Zlatev, Z. & Stoeva, N. (2002). Effect of paclobutrazol on wheat seedlings under low temperature stress. Bulg. J. Plant Physiol 28(1-2): 75-84.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(1-2): 248-254.
Demiral, T. & Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and experimental botany 53(3): 247-257.
Enferad, A., Poustini, K., Hosseini, N. M. & Khajeh-Ahmad-Attari, A. (2004). Physiological responses of rapeseed (Brassica napus L.) varieties to salinity. JWSS-Isfahan University of Technology 7(4): 103-113.
Esra, K. & USTUN, A. S. (2012). Phenylalanine Ammonia Lyase Activity in Stem of Pepper (Capsicum annuum L.) Infected by Phytophthora capsici L. Gazi University Journal of Science 25(2): 307-312.
Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H. & Tanaka, Y. (2004). Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant and Cell Physiology 45(2): 146-159.
Ghassemi-Golezani, K. & Hosseinzadeh-Mahootchi, A. (2015). Improving physiological performance of safflower under salt stress by application of salicylic acid and jasmonic acid. WALIA journal 31: 104-109.
Greive, C. & Grattan, S. (1983). Rapid assay for determination of water soluble quaternary-amino compounds. Plant Soil 70: 303-307.
Hahlbrock, K. & Scheel, D. (1989). Physiology and molecular biology of phenylpropanoid metabolism. Annual review of plant biology 40(1): 347-369.
Halfter, U., Ishitani, M. & Zhu, J.-K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences 97(7): 3735-3740.
Harborne JB, Williams CA. (2000). Advances in flavonoid research since 1992. Phytochemistry 55: 481-504.
Hassanpour, H., Khavari-Nejad, R. A., Niknam, V., Najafi, F. & Razavi, K. (2012). Effects of penconazole and water deficit stress on physiological and antioxidative responses in pennyroyal (Mentha pulegium L.). Acta physiologiae plantarum 34(4): 1537-1549.
Hassanpour, H., Khavari-Nejad, R. A., Niknam, V., Najafi, F. & Razavi, K. (2013). Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress. Physiology and Molecular Biology of Plants 19(4): 489-498.
Hayat, Q., Hayat, S., Irfan, M. & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and experimental botany 68(1): 14-25.
Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics 125(1): 189-198.
Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347(2nd edit).
Hojati, M., Modarres-Sanavy, S. A. M., Ghanati, F. & Panahi, M. (2011). Hexaconazole induces antioxidant protection and apigenin-7-glucoside accumulation in Matricaria chamomilla plants subjected to drought stress. Journal of Plant Physiology 168(8): 782-791.
Jaleel, C. A., Gopi, R., Manivannan, P. & Panneerselvam, R. (2008). Exogenous application of triadimefon affects the antioxidant defense system of Withania somnifera Dunal. Pesticide biochemistry and physiology 91(3): 170-174.
Jaleel, C. A., Kishorekumar, A., Manivannan, P., Sankar, B., Gomathinayagam, M., Gopi, R., Somasundaram, R. & Panneerselvam, R. (2007). Alterations in carbohydrate metabolism and enhancement in tuber production in white yam (Dioscorea rotundata Poir.) under triadimefon and hexaconazole applications. Plant Growth Regulation 53(1): 7-16.
Jaleel, C. A., Zhao, C., Mohamed, S., Al-Juburi, H. J., Moussa, H. R., Gomathinayagam, M. & Panneerselvam, R. (2009). Alterations in sucrose metabolizing enzyme activities and total phenol content of Curcuma longa L. as affected by different triazole compounds. Frontiers of Biology in China 4(4): 419- 423.
Khadri, M., Tejera, N. & Lluch, C. (2007). Sodium chloride–ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environmental and experimental botany 60(2): 211-218.
Leon, J., Lawton, M. A. & Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant physiology 108(4): 1673-1678.
Mikołajczyk, M., Awotunde, O. S., Muszyńska, G., Klessig, D. F. & Dobrowolska, G. (2000). Osmotic stress induces rapid activation of a salicylic acid–induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. The plant cell 12(1): 165-178.
Mueller, M. J., Brodschelm, W., Spannagl, E. & Zenk, M. H. (1993). Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proceedings of the National Academy of Sciences 90(16): 7490-7494.
Muthukumarasamy, M., Gupta, S. D. & Panneerselvam, R. (2000). Influence of triadimefon on the metabolism of NaCl stressed radish. Biologia Plantarum 43(1): 67-72.
Nair, V. D., Jaleel, C. A., Gopi, R. & Panneerselvam, R. (2009). Changes in growth and photosynthetic characteristics of Ocimum sanctum under growth regulator treatments. Frontiers of Biology in China 4(2): 192-199.
Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D. & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany 53(372): 1237-1247.
Orcutt, D. & Nilsen, E. (2000).The physiology of plants under stress, volume 2: soil and biotic factors. New York: John Wiley and Sons.
Palma, F., Lluch, C., Iribarne, C., García-Garrido, J. M. & García, N. A. T. (2009). Combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regulation 58(3): 307-316.
Pardo, J. M. & Rubio, F. (2011). Na+ and K+ transporters in plant signaling. Transporters and pumps in plant signaling,  Springer. 65-98.
Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety 60(3): 324-349.
Parvaiz, A. & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants-a review. Plant Soil and Environment 54(3): 89.
Quintero, F. J., Ohta, M., Shi, H., Zhu, J.-K. & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences 99(13): 9061-9066.
Rahman, S., Miyake, H. & Takeoka, Y. (2002). Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Production Science 5(1): 33-44.
Ranganna, S. (1986). Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Education.
Said-Al Ahl, H. & Omer, E. (2011). Medicinal and aromatic plants production under salt stress. A review. Herba polonica 57(1): 72-87.
Schmid-Siegert, E., Loscos, J. & Farmer, E. E. (2012). Inducible malondialdehyde pools in zones of cell proliferation and developing tissues in Arabidopsis. Journal of Biological chemistry 287(12): 8954-8962.
Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant science 164(3): 317-322.
Shirasu, K., Nakajima, H., Rajasekhar, V. K., Dixon, R. A. & Lamb, C. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. The plant cell 9(2): 261-270.
Singh, P. K. & Gautam, S. (2013). Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta physiologiae plantarum 35(8): 2345-2353.
Tsegaw, T., Hammes, S. & Robbertse, J. (2005). Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. HortScience 40(5): 1343-1346.
Tun, N. N., Santa-Catarina, C., Begum, T., Silveira, V., Handro, W., Floh, E. I. S. & Scherer, G. F. (2006). Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant and Cell Physiology 47(3): 346-354.  
Velikova, V., Yordanov, I. & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant science 151(1): 59-66.
Wuyts, N., De Waele, D. & Swennen, R. (2006). Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots. Plant Physiology and Biochemistry 44(5): 308-314.
Zhang, M., Duan, L., Tian, X., He, Z., Li, J., Wang, B. & Li, Z. (2007). Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Journal of Plant Physiology 164(6): 709-717.