نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار .گروه علوم باغبانی- دانشکده کشاورزی و منابع طبیعی- دانشگاه اراک

2 کارشناسی ارشد . گروه علوم باغبانی- دانشکده کشاورزی و منابع طبیعی- دانشگاه اراک

3 استادیار . گروه باغبانی دانشگاه اراک

چکیده

گیاه‌پالایی به‌عنوان روشی مقرون به‌صرفه و سازگار با محیط‌زیست، در پاک‌سازی خاک‌های آلوده به فلزات سنگین به‌کار می‌رود. پژوهش حاضر با هدف بررسی مقاومت و پالایندگی کالوس‌های درختچه گز تحت تاثیر القای جهش با استفاده از اتیل متان سولفونات انجام شد. در مرحله اول بهینه کردن القای کالوس و جهش در محیط کشت دارای غلظت‌های مختلف 2,4- انجام شد. آزمایش سوم شامل ارزیابی میزان مقاومت و پالایش کالوس در غلظت‌های صفر تا 40 میلی‌گرم در لیتر کادمیوم در دو نوع ریزنمونه تیمار شده و نشده با EMS بود. غلظت یک میلی‌گرم در لیتر 2,4-D بیشترین میزان زنده‌مانی و القای کالوس را در کمترین زمان ایجاد نمود. اعمال EMS با غلظت 2/0 درصد و زمان 30 دقیقه بیشترین میزان زنده‌مانی و کمترین میزان سیاه شدن ریزنمونه‌ها را ایجاد کرد. بیشترین میزان تجمع کادمیوم به‌میزان 56/1053 میلی‌گرم در کیلوگرم ماده خشک کالوس در غلظت 40 میلی‌گرم در لیتر کادمیوم به‌دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

In vitro mutation breeding in Tamarix aphylla to increased Cd tolerance and accumulation

نویسندگان [English]

  • Mina Taghizadeh 1
  • Parvin Karimi 2
  • mousa solgi 3

1 Assistant Professor.department horticulture, arak university

2 Msc.department horticulture, arak university

3 Assistant Professor.Department of Horticulture, Arak University

چکیده [English]

Phytoremediation as a cost-effective and environmental friendly technique used to polluted soils with heavy metals contamination. The present study was aimed to evaluate the resistance and remediation of Tamarix aphylla calli affected by in vitro mutagenesis with. In the first step, optimization of callus induction and mutation in media with different concentrations of -2,4 was performed. The third experiments involved the evaluating of resistance and remeditaion rate of callus to cadmium at the concentrations of 0-40 mg L-1 in both treated and untreated explants with Ethyl methanesulfonate in medium. The highest survival and induction of callus was induced by the concentration of 1 mg L-1 2,4-D during the short time. Ethyl methanesulfonate at concentration of 0.2 percentage and 30 minutes made the maximum survival and minimum blacking phenomenon of explants. The highest accumulation of cadmium was obtained 1053.56 mg kg-1 dry weight in callus treated by 40 mg L-1 cadmium.

کلیدواژه‌ها [English]

  • EMS
  • Mutation
  • Heaevy metals
  • Phytoremediation
  • Tissue culture
گنجی، م. (1395). توانایی ماده جهش‌زایEMS در مقاومت و پالایندگی درختچه زینتی طاووسی نسبت به کادمیوم. پایان‌نامه کارشناسی ارشد در رشته علوم باغبانی دانشگاه اراک، 211 ص.
تقی‌زاده، م. (1390). ارزیابی قابلیت چمن در گیاه‌پالایی سرب، القای درون‌شیشه‌ای و ردیابی مولکولی آن. رساله دریافت درجه دکتری در رشته علوم باغبانی دانشگاه تهران، 210 ص.
تقی زاده، م.، سلگی م. و شهرجردی ا. (1395).  بررسی اثرات ضد میکروبی برخی ترکیبات اسانسی جهت گندزدایی سطحی ریزنمونه­های توت فرنگی. زیست فناوری گیاهان دارویی، 3: ص 21-10.
Al-Khayri, J. and Al-Bahrany, A. (2004). Growth, water content, and proline accumulation in drought-stressed callus of date palm. Biologia Plantarum, 48: 105-108.
Azevedo, H., Glória Pinto, C.G. and Santos, C. (2005). Cadmium effects in sunflower: membrane permeability and changes in catalase and peroxidase activity in leaves and calluses. Journal of plant nutrition, 28: 2233-2241.
Behera, M., Panigrahi, J., Mishra, R.R. and Rath, S.P. (2012). Analysis of EMS induced in vitro mutants of Asteracantha longifolia(L.) Nees using RAPD markers. Indian Journal of Biotechnology, 11: 39-47.
Castro, A.H.F., Braga, K.D.Q., Sousa, F.M.D., Coimbra, M.C. and Chagas, R.C.R. (2016). Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC.(Malpighiaceae). Revista Ciência Agronômica, 47: 143-151.
Clemens, S. and Ma, J.F. (2016). Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annual review of plant biology, 67: 489-512.
Cui, Y. and Wang, Q. (2006). Physiological responses of maize to elemental sulphur and cadmium stress. Plant Soil and Environment, 52: 523-529.
Errabii, T., Gandonou, C.B., Essalmani, H., Abrini, J., Idaomar, M. and Skali-Senhaji, N. (2006). Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. African Journal of Biotechnology, 5: 1488-1493.
Fornazier, R.F., Ferreira, R.R., Pereira, G.J., Molina, S.M. and Smith, R.J., Lea, P.J. and Azevedo, R.A. (2002). Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell, Tissue And Organ Culture, 71: 125-131.
Hagemeyer, J. and Waisel, Y. (1988). Excretion of ions (Cd2+, Li+, Na+ and Cl) by Tamarix aphylla. Physiologia Plantarum, 73: 541-546.
Hoque, M.E. and Mansfield, J.W. (2004). Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of Indica rice genotypes. Plant cell, tissue and organ culture, 78: 217-23.
Hussain, I., Akhtar, S., Ashraf, M.A., Rasheed, R., Siddiqi, E.H. and Ibrahim, M. (2013). Response of maize seedlings to cadmium application after different time intervals. Hindawi P ublishing Corporation Agronomy, 2013: 1-9.
Iori, V., Pietrini, F., Massacci, A. and Zacchini, M. (2012). Induction of metal binding compounds and antioxidative defence in callus cultures of two black poplar (P. nigra) clones with different tolerance to cadmium. Plant Cell, Tissue and Organ Culture, 108: 17-26.
Israr, M., Sahi, S. and Jain, J. (2006). Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Archives of environmental contamination and toxicology, 50: 121-127.
Kabata-Pendias, A. (2010). Trace elements in soils and plants. Taylor& Francis Group, New York,CRC press, 507.
Kadukova, J., Manousaki, E. and Kalogerakis, N. (2008). Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). International journal of Phytoremediation, 10: 31-46.
Kim, Y., Schumaker, K.S. and Zhu, J.K. (2006). EMS mutagenesis of Arabidopsis. Arabidopsis Protocols, 101-103.
Knasmüller, S., Gottmann, E., Steinkellner, H., Fomin, A., Pickl, C., Paschke, A., God, R. and Kundi, M. (1998). Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 420: 37-48.
Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L. and Pakrasi, H.B. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant molecular biology, 40: 37-44.
Lutts, S., Lefèvre, I., Delpérée, C., Kivits, S. and Dechamps, C., Robledo, A. and Correal, E. (2004). Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33: 1271-1279.
Ma, H., Tian, C., Feng, G. and Yuan, J. (2011). Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively. ScienceChina Life Sciences, 54: 282-289.
Manousaki, E., Kadukova, J., Papadantonakis, N. and Kalogerakis, N. (2008). Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environmental Research, 106: 326-332.
Manousaki, E., Kokkali, F. and Kalogerakis, N. (2009). Influence of salinity on lead and cadmium accumulation by the salt cedar (Tamarix smyrnensis Bunge). journal of chemical technology and biotechnology, 84: 877–883.
Nagajyoti, P., Lee, K., and Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8: 199-216.
Namjooyan, S., Khavarinejad, R., Bernard, F., Namdjoyan, S. and Piri, H. (2012). The effect of cadmium on growth and antioxidant responses in the safflower (Carthamus tinctorius L.) callus. Turkish Journal Of Agriculture And Forestry, 36: 145-152.
Nedjimi, B. and Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora-Morphology, Distribution, Functional Ecology of Plants, 204: 316-324.
Nehnevajova, E., Herzig, R., Erismann, K.H. and Schwitzguébel, J.P. (2007). In vitro breeding of Brassica juncea L. to enhance metal accumulation and extraction properties. Plant Cell Reports, 26: 429-437.
North, J., Ndakidemi, P. and Laubscher, C. (2012). Effects of antioxidants, plant growth regulators and wounding on phenolic compound excretion during micropropagation of Strelitzia reginae. International Journal of Physical Sciences, 7: 638-646.
Nyitrai, P., Bóka, K., Gáspár, L., Sárvári, É., Lenti, K. and Keresztes, Á. (2003). Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings. Journal of Plant Physiology, 160: 1175-1183.
Omar, M. and Novak, F. (1990). In vitro plant regeneration and ethylmethanesulphonate (EMS) uptake in somatic embryos of date palm (Phoenix dactylifera L.). Plant cell, tissue and organ culture, 20: 185-190.
Patade, V.Y., Suprasanna, P. and Bapat, V. (2008). Gamma irradiation of embryogenic callus cultures and in vitro selection for salt tolerance in sugarcane (Saccharum officinarum L.). Agricultural Sciences in China, 7: 1147-1152.
Piotto, F.A., Tulmann-Neto, A., Franco, M.R., Boaretto, L.F. and Azevedo, R.A. (2014). Rapid screening for selection of heavy metal-tolerant plants. Crop Breeding and Applied Biotechnology, 14: 1-7.
Schum, A. and Preil, W. (1998). Induced mutations in ornamental plants. In Somaclonal variation and induced mutations in crop improvement, Kluwer Academic publisher, Dordrecht, Springer, 333-366.
Seregin, I. and Ivanov, V. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48: 523-544.
Sharma, A., Bhansali, S. and Kumar, A. (2013). In vitro callus induction and shoot regeneration in Eclipta alba (L.), Hassk. International Journal of Life Science & Pharma Research, 3:  43-46.
Shekhawat, G.S., Verma, K., Jana, S., Singh, K., Teotia, P. and Prasad, A. (2010). In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma, 239: 31-38.
Shu, Q., Forster, B.P., Nakagawa, H. and Nakagawa, H. (2012). Plant mutation breeding and biotechnology. CAB International and FAO, 591.
Siedlecka, A. and Krupa, Z. (1999). Cd/Fe interaction in higher plants-its consequences for the photosynthetic apparatus. Photosynthetica, 36: 321-331.
Sobkowiak, R., Rymer, K., Rucinska, R. and Deckert, J. (2004). Cadmium-induced changes in antioxidant enzymes in suspension culture of soybean cells. Acta Bioghimica Polonica-English Edition, 51: 219-222.
Soudek, P., Petrová, Š. and Vaněk, T. (2011). Heavy metal uptake and stress responses of hydroponically cultivated garlic (Allium sativum L.). Environmental and experimental botany, 74: 289-295.
Taghizadeh, M., Kafi, M. and Fattahi-Moghadam, M.R (2015). Breeding by In vitro Culture to Improve Tolerance and Accumulation of Lead in Cynodon Dactylon L. Journal of Agriculture and Science Technology, 17: 1851-1860.
Thangavel, P., Long, S. and Minocha, R. (2007). Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant cell, tissue and organ culture, 88: 201-216.
Vitória, A.P., Lea, P.J. and Azevedo, R.A. (2001). Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, 57: 701-710.
Wei, P., Zhi, J., Qin, L., Cen, X., Zhu, H. and Zhou, F. (2014). Effects of EMS Treatments on Multiplication and Differentiation of Sugarcane Embryonic Cell Clusters. Agricultural Biotechnology, 3: 40-43.
Yang, X., Long, X., Ni, W. and Fu, C. (2002). Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chinese Science Bulletin, 47: 1634-1637.
Zacchini, M., Pietrini, F., Mugnozza, G.S., Iori, V., Pietrosanti, L. and Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197: 23-34.
Zhang, X.C., Millet, Y., Ausubel, F.M. and Borowsky, M. (2014). Next‐Gen Sequencing‐Based Mapping and Identification of Ethyl Methanesulfonate‐Induced Mutations in Arabidopsis thaliana. In Current Protocols in Molecular Biology, John Wiley & Sons, Inc., 4648.