بررسی بیان ژن rus باکتری Acidithiobacillus ferrooxidans تیمار شده با اشعه UV در فرایند فروشویی میکروبی اورانیوم

نوع مقاله: مقاله پژوهشی


1 دانشجوی دکتری بیوشیمی، دانشگاه پیام نور واحد تهران شرق، تهران، ایران

2 استاد، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران


باکتری Acidithiobacillus ferrooxidans از مهمترین باکتری­های شرکت کننده در فرآیند فروشویی میکروبی اورانیوم بوده که در آن، آهن فریک به عنوان یک پذیرنده الکترون عمل کرده و U+4 نامحلول را به U+6 محلول، تبدیل می­کند. در مطالعه حاضر، باکتری­ دخیل در فرآیند فروشویی میکروبی اورانیوم با استفاده از اشعه UV در سه دوز 60، 120 و 180 ثانیه جهش داده شد. باکتری ها در حضور غلظت های مختلف سنگ اورانیوم قرار داده شده و بازده فروشویی میکروبی آنها بررسی گردید. سپس، در توالی های 24 ساعته میزان استخراج اورانیوم، تغییرات pH و Eh آنها اندازه گیری شد.نهایتا، بیان ژن rus باکتری Acidithiobacillus ferrooxidans جهش یافته و وحشی در حضور چگالی پالپ های مختلف با استفاده از روش Real time PCR مورد بررسی قرار گرفت. نتایج حاصل از آزمایشات نشان می­دهد تغییرات Eh، pH و استخراج اورانیوم در فرآیند فروشویی میکروبی توسط باکتری های جهش یافته و وحشی با چگالی پالپ بالای سنگ نسبت به باکتری­های کشت یافته با چگالی پالپ پائین­تر به تأخیر افتاده است. نتایج حاصل از بررسی بیان ژن rusباکتری جهش یافته و وحشی در غلظت های مختلف کانسنگ نشان داد که جهش و غلظت سنگ بر روی بیان ژن مذکور موثر بوده است. به عبارتی دیگر می توان اذعان داشت که تغییرات بیان ژن rus عامل تاثیر گذاری بر فعالیت باکتری در استخراج اورانیوم با افزایش چگالی پالپ، می باشد.در تحقیق حاضر، باکتری بومی تا 50٪ کانسنگ معدن سازگار شده که مقدار بسیار قابل توجهی در فرایند فروشویی میکروبی اورانیوم می باشد.



عنوان مقاله [English]

Evaluation of Acidithiobacillus ferrooxidans rus gene expression treated with UV radiation in uranium bioleaching process

نویسندگان [English]

  • Malus Sheydaie 1
  • Reza Haji Hosseini 2

1 PhD. Student of Biochemistry, Faculty of Science, Payame Noor Univercity, Tehran, Iran

2 Biology Departments, Faculty of Science, Payame Noor Univercity, Tehran, Iran

چکیده [English]

Acidithiobacillus ferrooxidans is the main bacteria involved in the uranium bioleaching in which the ferric ion acts as an electron acceptor and converts insoluble U+4 to soluble U+6. The oxidation process involved the electron transport chain which would occur through several periplasmic carriers. In this research, the bacterium involved in uranium bioleaching process was mutated using UV radiation at doses of 60, 120 and 180 seconds. Mutant and wild bacteria were placed in the presence of various concentrations of uranium ore (5, 10, 15, 25 and 50 %) and their bioleaching yields were examined. Then, uranium extraction, variation of pH and Eh were measured in the 24 hour intervals. Finally, rus gene expressions of mutant and wild Acidithiobacillus ferrooxidans in the presence of various uranium ore were analyzed using Real time PCR method. The results showed that, the changes of Eh, pH and uranium extractions at bioleaching process by mutant and wild bacteria have been delayed in the presence of high pulp density in compare with lower one. The results of rus gene expressions in mutant and wild bacteria in the presence of ore different concentrations showed that mutations and ore concentration has been effective on the expression of this gene. It should be noted that, in the present project, the native bacteria were adapted to 50% uranium ore that is very significant at uranium bioleaching process.

کلیدواژه‌ها [English]

  • Uranium bioleaching
  • Acidithiobacillus ferrooxidans
  • rus gene
  • Real time PCR

Abhilash, S., Mehta, K.D., Kumar V., Pandey B.D., and PandeyV.M. (2009) “Dissolution of uranium from silicate-apatite ore by Acidithiobacillus ferrooxidans” Hydrometallurgy, 95:70-75.

Abhilash, S., Mehta, K.D., Kumar, V., Pandey, B.D and Tamrakar, P.K. (2010) “Bioleaching - An Alternate Uranium Ore Processing Technology for India” Energy Procedia, 7:158–162.

Akcil, A. (2004) “Technical note: potential bioleaching developments towards commercial reality”Minerals Engineering, 17:477–480.

Appia-Ayme, C., Guiliani, N., Ratouchniak, J. and Bonnefoy, V. (1999) “Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus Ferrooxidans ATCC 33020” Applied and Environmental Microbiology65, 4781-4787.

Attia, Y.A.,Eleky, M., Ismail, M. (1993) Int J Min Proc 37:61.

Azizur Rahman, M; (2016) “Development of bioleaching: proteomics and genomics approach in metals extraction process” AIMS Microbiology  2(3):332-339. 

Babij, T and Madgwick, J.C.; (1993) “High yeild bacterial leaching of copper Concentrates” proc. Australas. Instr. Min. Metal, 287:61-64,

Boon, M. and Heijnen, J.J. (1998) “Gas-liquid mass transfer phenomena in biooxidation experiments of sulphide minerals: a review of literature data” Hydrometallurgy, 48:187-204.

Brandl, H. (2008) “Microbial Leaching of Metals” Wiley-VCH 8.

Chen, G.,  Sun, Z. and  Liu, Y. (2016) “Continued Multicolumns Bioleaching for Low Grade Uranium Ore at a Certain Uranium Deposit” Journal of Nanomaterials,  2016:7.

Chen, P., Yan, L., Wang, Q., Li, Y. and Li, H. (2012) “Surface alteration of realgar (As4S4) by Acidithiobacillus ferrooxidans” International microbiology, 15:9-15.

Chen, S. and Lin, J. (2001) “Bioleaching of heavy metals from sediment:significance of PH”Chemosphere, 44:1093-1102.

Chong, N., Karamanev, D.G. and Margaritis, A. (2002) “Effect of particle-particle shearing on the bioleaching of sulfide minerals” Biotechnology and Bioengineering,80(3):349-357.

Dong, X., Li, C. and Liu, J. (2010) “A novel approach for soil contamination assessment from heavy metal pollution: A linkage between discharge and adsorption” J. Hazard. Mater, 175:1022-1030.

Dong, X., Li, C. and Liu, J. (2010) “A novel approach for soil contamination assessment from heavy metal pollution: A linkage between discharge and adsorption” J. Hazard. Mater, 175:1022-1030.

Gomez, C., Blazquez, M.L. and Ballester, A. (1998) “Bioleaching of a Spanish complex sulfide ore bulk concentrate” Minerals Engineering, 12:93-106.

Grishin, S.I., Bigham, J.M. and Tuovinen, O.H. (1989) “Characterization of jarosite formed upon bacterial. Oxidation of ferrous sulfate in a packed-bed reactor” Applied and Environmetal Microbiology,3101.

Jahani, S., Fatemi, F., Firoz-e-zare, M.A. and Zolfaghari, M.R. (2015) “Isolation and Characterization of Acidithiobacillus ferrooxidans Strain FJS from Ramsar, Iran”Electronic Journal of Biology, 11(4):138-146.

Keith-Roach, M.J. and Livens, F.R. (2002) “Interactions of microorganisms with radionuclides” 1st edition. Elsevier.

Kinnunen, P.H. and Puhakka, J.A. (2005) “High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a Leptospirillum ferriphilum dominated biofilm” Process Biochemistry, 40(11):3536–3541.

Meruane, G. and Vargas, T. (2003) “Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5–7.0” Hydrometallurgy, 71(1–2):149–158.

Meyer, T.E. (1996) “Evolution and classification of c-type cytochromes In: Cytochrome c: A Multidisciplinary Approach (Scott, R.A. and Mauk, A.G., Eds.)” University Science Books, Sausalito, CA 33-99.

Moon-Sung, C., Kyung-Suk, C., Dong-Su, K and  Hee-Wook, R; (2005) “Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans” World Journal of Microbiology & Biotechnology 21:377-380.

Rawlings, D.E. (2005) “Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates” Microbial Cell Factories, 10:1475-2859.

Rossi, G. (1990) “Biohydrometallurgy” McGraw-Hill, Hamburg.

Sand, W., Gehrke, T., Hallmann, R and Schippers, A. (1995) “Sulfur chemistry, biofilm, and the (in) direct attack mechanism–critical evaluation of bacterial leaching” App Microbiol Biotechnol, 43:961–966.

Sandstorm, A. and Petersson, S. (1997) “Bioleaching of a complex sulphide ore with moderate thermophilic and extreme thermophilic microorganism” Hydrometallurgy,  46(1–2):181-190.

Sapsford, D.J., Bowell, R.J., Geroni, J.N., Penman, K.M. and Dey, M. (2012) “Factors influencing the release rate of uranium, thorium, yttrium and rare earth elements from a low grade ore” Minerals Engineering 39:165–172.

Shahroz, K., Faizul, H., Fariha, H., Kausar, S. and Rahat, U. (2012) “Growth and biochemical activities of Acidithiobacillus thiooxidans collected from Black Shale” Journal of Microbiology Research, 2(4):78-83.

Smith, J.E; (2009) “Biotechnology” Cambridge University Press. 5th edition.

Vera, M., Rohwerder, T., Bellenberg, S., Sand, W., Denis, Y. and Bonnefoy, V. (2009) “Characterization of biofilm formation by the bioleaching acidophilic bacterium Acidithiobacillus ferrooxidans by a microarray transcriptome analysis” Advanced Materials Research 71: 175-178

Vernon, L.P., Mangum, J.H., Beck, J.V. and Shafia, F.M. (1960) “Studies on a ferrous-ion-oxidizing bacterium. II. Cytochrome composition” Arch. Biochem. Biophysics,  88:227-231.

 Yarzabal, A. and Appia-Ayme, C. (2004) “Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin” Microbiology, 150:2113-23.

Yingbo, D., Hai, L., Han, W., Xiaolan, M., Kaibin, F. and Hongwei, W. (2011) “Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings” Minerals engineering, 24:870–875.

Yuan, X., Xie, X., Fan, F., Zhu, W., Liu, N. and Liu, J. (2013) “Effects of mutation on a new strain Leptospirillum ferriphilum YXW and bioleaching of gold ore” Transactions of Nonferous Metals Society of China, 23:2751-2758.

Zhang, Y., Qin, W., Wang, J., Zhen, S., Yang, C., Zhang, J.,  Nai, S. and Qiu, G. (2008) “Bioleaching of chalcopyrite by pure and mixed culture” Trans. Nonferrous Met. Soc. China 18:1491-1496.