نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه زیست‌شناسی، دانشکده علوم، دانشگاه ارومیه

2 دانشجوی ارشد، گروه زیست‌شناسی، دانشکده علوم، دانشگاه ارومیه

چکیده

شوری یکی از مهمترین فاکتورهای محیطی است که موجب کاهش رشد، نمو و حاصلخیزی گیاهان در سراسر جهان می­شود. موضوع تحقیق حاضر مطالعه اثر تنش شوری (0، 50 و 100 میلی مولار NaCl) بر گیاهان ذرت (Zea mays L. cv. SC. 704) کشت شده به روش گلخانه‌ای و هیدروپونیک بود. بعد از یک ماه تیمار شوری، پارامترهای رشد و برخی تغییرات بیوشیمایی در ریشه‌ها و اندام هوایی گیاهان کشت شده مورد مطالعه قرار گرفت. نتایج نشان داد که با افزایش غلظت شوری، سطح برگ وطول ریشه‌ها و اندام هوایی کاهش یافت، در صورتیکه میزان قندهای محلول، پراکسید هیدروژن، مالون دی آلدئید به عنوان شاخص پراکسیداسیون چربی افزایش یافت. میزان فعالیت آنزیم­های کاتالاز (CAT)، آسکوربات پراکسیداز (APX) و گایاکول پراکسیداز (GPX)در گیاهان تحت تیمار در هر دو غلظت کلرید سدیم افزایش یافت. بنابراین اعمال تیمار NaClبا افزایش تولید ROSموجب القا تنش اکسیداتیو و افزایش فعالیت آنزیم­های مسئول محافطت آنتی‌اکسیدانی در گیاهان ذرت شد.

کلیدواژه‌ها

عنوان مقاله [English]

Salinity effect on antioxidative enzymes activity in roots and leaves of maize plant (Zea mays L. cv. SC. 704)

نویسندگان [English]

  • Latifeh Poorakbar 1
  • sonia Maghsoumi Holasoo 2

چکیده [English]

Salinity is one of the most important environmental factors which reduce the plants growth and their fertility around the world. In this study maize (Zea mays L.) plants grown in hydroponic culture were treated with NaCl(0, 100 and 150mM).After 1 month of treatment, growth parameters and some biochemical changes were studied in roots and shoots of plants. The results showed that with increasing NaCl concentration, leaf area and root and shoot length were decreased, while total soluble sugar, level of H2O2, malondealdyde as indicator lipid of peroxidation were increased. The activities of catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase increased in plants supplied with both concentration of NaCl. Therefore, it can be concluded that supply of NaCl induced oxidative stress by increasing production of ROS despite increased antioxidant protection in maize plants.

کلیدواژه‌ها [English]

  • Maize
  • Salinity
  • Lipid peroxidation
  • Oxidative stress
  • H2O2
  • antioxidants
میرمحمدی میبدی، ع. و قره یاضی، ب.؛ (1381). جنبه­های فیزیولوژیک و به‌نژادی تنش شوری گیاهان. انتشارات دانشگاه صنعتی اصفهان، اصفهان.
Aebi, H.(1983). Catalase. In H Bergmeyer, ed, Methods of enzymatic analysis 3. Verlag Chemie, Weinheim, Germany. 273-277.
Apel, K. and Hirt, H.(2004). Reactive oxygen species: metabolism oxidative stress, and signaling transduction. Annu Rev Plant Biol. 55: 373–399.
Asada, K. (1992). Acorbate peroxidase a hydrogen peroxide scavenging enzyme in plants. Plant Physiol. 85: 235-241.
Bandeoglu, E., Eyidogan, F., Yucel, M. and Avni Oktem, H. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul. 42: 69-77.
Blokhina, O., Virolanen, E. and Fagestedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress. Ann Bot. 91: 179-194.
Cavalcanti, F., Lima, J.P., Silva, S., Viegas, R. and Silveria, J. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol. 164: 591-600.
Chen, J., Zhu, C., Lin, D. and Sun, Z.X. (2007). The effect of Cd on lipid peroxidation, hydrogenperoxide content and antioxidant enzyme activities in Cd-sensitive mutant rice seedlings. Can Plant Sci. 87: 49-57.
Flowers, T.J. (1999). Salinisation and horticultural production. Sci Hortic. 78: 1-4
Flowers, T.J. and Flowers, S.A.M.(2005). Why does salinity pose such a difficult problem for plant breeders?Agric Water Manage. 78: 15-24.
Garg, A.K., Ownes, J.K. and Wu, R.J. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stress. Proceeding of the National Academy of Sciences of the United States of America. 99: 15898-15903.
Heath, R.L. and Packer, L.(1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125: 189–198.
Hoagland, D.R., and Arnon, D.I. (1950). The water culture method for growing plants without soil. University of California, Berkeley, CA, USA.
Jana, S. and Choudhuri, M.A.(1981) Glycolate metabolism of three submerged aquatic anagiosperms during aging. Aquat Bot. 12: 345-354.
Jones, M.M. and Turner, N.C. (1978). Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol. 61: 122-126.
Kang, H.M. and Saltiveit, M.E. (2002). Chilling tolerance of maize, cucumber and rice seedling (leaves and roots) and differentially affected by salicylic acid. Physiol Plantarum. 115: 577-576.
Kochert, G. (1978). Carbohydrate determination by phenol-sulfuric acid method. In: J.A. Hellebust and J.S. Craige, Editors, Handbook of physiological and biochemical methods, Cambridge University Press, London, Pp: 95–97.
Lin, C.C., and Kao, H. (2002). Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul. 30: 151-155.
Meloni, D.A., Oliva, M.A., Martinez, C.A. and Cambraia, B.(2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot. 49: 69-76.
Misra, A.N., Sahu, S.M. and Misra, M. (1997). Sodium chloride induced changes in leaf growth and pigment and protein contents in two rice cultivars. J Plant Biol. 39: 257-262.
Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environ. 25: 659-151.
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59: 651-81.
Nawaz, K., and Ashraf, M. (2010). Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci. 196(1): 28–37.
Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
Noreen, Z. and Ashraf, M.(2009). Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environ Exp Bot. 67(2): 395-402.
Razmjoo, K., Heydarizadeh, P. and Sabzalian, M. (2008).Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. IntJ Agr Biol. 10: 451-454.
Rus, A.M., Estan, M.T., Gisbert, C., Garcia-Sogo, B., Serrano, R., Caro, M., Moreno, V. and Bolarini, M.C. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ. 24: 875-880.
Sairam, R.K., Veerabhadra, R.K. and Srivastava, G.C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163: 1037-1046.
Selote, D.S. and Khanna-Chopra, R. (2004). Drought-induced spikelet sterility is associated with an inefficient antioxidant defense in rice panicles. Plant Physiol. 121: 462-471.
Shilpim, M. and Narendra, T. (2005). Cold, salinity and drought stresses: an overview.Arch Biochem Biophys. 444: 139-158.
Shonjani, S (2002). Salt sensitivity of rice, maize, sugar beet and cotton. Dissertation. Faculty of Agricultural and Nutritional Sciences, Home Economics and Environmen-tal Management Submitted by Saeed Shonjani. Institute of Plant Nutrition Justus Liebig University, Giessen.
Tester, M. and Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Ann Bot. 91 (5): 503-7.
Updhyaya, A., Sankhla, D., Davis, T.D., Sankhla, N. and Smidth, B.N.(1985). Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. Plant Physiol. 121: 453-461.
Venkatesan, A. and Sridevi, S. (2009). Response of antioxidant metabolism to NaCl stress in the halophyte salicornia brachiata roxb. J Phytol. 4: 242-248
Williams, L.E., Lemonie, R. and Saucer, N. (2000). Sugars transporters in higher plants: a diversity of roles and complex regulation trends. Plant Sci. 5: 283-290.
Yasar, F., Ellialtioglu, S. and Yildiz, K. (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Phys. 55(6): 782-786.
Zhu, J.K. (2007). Plant salt stress. Encyclopedia of Life Sciences. John Wiley and Suns Ltd. 1-3.