Agarwal, H., Menon, S., Kumar, S. V., & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286, 60-70.
Ahmed, R. H., & Mustafa, D. E. (2020). Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters, 10(1), 1-14.
Anandakumar, P., Kamaraj, S., & Vanitha, M. K. (2021). D-limonene: A multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry, 45(1), e13566.
Anastas, P. T., & Warner, J. C. (1998). Principles of green chemistry. Green chemistry: Theory and practice, 29, 14821-14842.
Ashengroph, M., & Fattahi, S. (2024). Characterization and optimization of biosynthesized silver nanoparticles by resting cells of Aspergillus niger using Taguchi methods. Applied Biology, 36(4), doi: 10.22051/jab.2023.42560.1539
Balsevich, J. J., Ramirez-Erosa, I., Hickie, R. A., Dunlop, D. M., Bishop, G. G., & Deibert, L. K. (2012). Antiproliferative activity of Saponaria vaccaria constituents and related compounds. Fitoterapia, 83(1),170-181
Castañeda-Aude, J. E., Morones-Ramírez, J. R., De Haro-Del Río, D. A., León-Buitimea, A., Barriga-Castro, E. D., & Escárcega-González, C. E. (2023). Ultra-small silver nanoparticles: a sustainable green synthesis approach for antibacterial activity. Antibiotics, 12(3), 574.
Efthimiadou, A., Karkanis, A., Bilalis, D., & Katsenios, N. (2012). Cultivation of cow cockle (Vaccaria hispanica (Mill.) Rauschert): an industrial–medicinal weed. Industrial Crops and Products, 40, 307-311.
Escobar, A., Perez, M., Romanelli, G., & Blustein, G. (2020). Thymol bioactivity: A review focusing on practical applications. Arabian Journal of Chemistry, 13(12), 9243-9269.
Feng, L., Zhang, X., Hua, H., Qiu, L., Zhang, L., & Lv, Z. (2012). Vaccaria segetalis extract can inhibit angiogenesis. Asian Biomedicine, 6(5), 683-692.
Godeto, Y. G., Ayele, A., Ahmed, I. N., Husen, A., & Bachheti, R. K. (2023). Medicinal plant-based metabolites in nanoparticles synthesis and their cutting-edge applications: An overview. Secondary Metabolites from Medicinal Plants, 1-34. CRC Press.
Haidarizadeh, M., Alijani, F., Ashengroph, M., & atashi, S. (2023). Comparison of chemical compounds, antioxidant and antimicrobial effects of Camellia sinensis black tea and green tea leaf extract on plant pathogenic bacteria (Xanthomonas campestris and Pseudomonas syringae) and human pathogenic b. Applied Biology, 36(2), doi: 10.22051/jab.2023.42286.1528
Ide, T., Murata, M., & Sugano, M. (1995). Octadecatrienoic acids as the substrates for the key enzymes in glycerolipid biosynthesis and fatty acid oxidation in rat liver. Lipids, 30(8), 755-762.
Ishak, N. A. I. M., Kamarudin, S. K., Timmiati, S. N., Sauid, S. M., Karim, N. A., & Basri, S. (2023). Green synthesis of platinum nanoparticles as a robust electrocatalyst for methanol oxidation reaction: Metabolite profiling and antioxidant evaluation. Journal of Cleaner Production, 382, 135111.
Isoe, S., Katsumura, S., & Sakan, T. (1973). The synthesis of Damascenone and β-Damascone and the possible mechanism of their formation from carotenoids. Helvetica Chimica Acta, 56(5), 1514-1516.
Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., ... & Atanasov, A. G. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology, 121, 82-94.
Jahan, N., & Arju, S. N. (2022). A Sustainable Approach to Study on Antimicrobial and Mosquito Repellency Properties of Silk Fabric Dyed with Neem (Azadirachta indica) Leaves Extractions. Sustainability, 14(22),15071
Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 14(7), 2534-2571.
Jiang, H., Wu, Y., Wang, H., Ferguson, D. K., & Li, C. S. (2013). Ancient plant use at the site of Yuergou, Xinjiang, China: implications from desiccated and charred plant remains. Vegetation History and Archaeobotany, 22, 129-140.
Kamatou, G. P., & Viljoen, A. M. (2008). Linalool–A review of a biologically active compound of commercial importance. Natural Product Communications, 3(7), 1934578X0800300727.
Karan, T., Erenler, R., Gonulalan, Z., & Kolemen, U. (2024). Biogenic synthesis of silver nanoparticles using Sambucus nigra leaves: elucidation, antimicrobial, antioxidant activities and quantification of phenolics. Chemical Papers, 78(1), 473-481.
Liu, Y., Yang, G., Baby, T., Tengjisi, Chen, D., Weitz, D. A., & Zhao, C. X. (2020). Stable polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation. Angewandte Chemie, 132(12), 4750-4758.
Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., & Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69, 485-492.
Ma, C. H., Fan, M. S., Lin, L. P., Tang, W. D., Lou, L. G., Ding, J. I. A. N., & Huang, C. G. (2008). Cytotoxic triterpenoid saponins from Vaccaria segetalis. Journal of Asian Natural Products Research, 10(2), 177-184.
Marinov, V., & Valcheva-Kuzmanova, S. (2015). Review on the pharmacological activities of anethole. Scripta Scientifica Pharmaceutica, 2(2), 14-19.
Meesapyodsuk, D., Balsevich, J., Reed, D. W., & Covello, P. S. (2007). Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiology, 143(2), 959-969.
Mohd Yusof, H., Abdul Rahman, N. A., Mohamad, R., Zaidan, U. H., & Samsudin, A. A. (2020). Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Scientific Reports, 10(1), 19996.
Mohd Yusof, H., Mohamad, R., Zaidan, U. H., & Abdul Rahman, N. A. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology, 10, 1-22.
Reddy, D. N. (2019). Essential oils extracted from medicinal plants and their applications. Natural Bio-Active Compounds: Volume 1: Production and Applications, 237-283.
Sang, S. M., Lao, A. N., Chen, Z. L., Uzawa, J., & Fujimoto, Y. (2000). Three new triterpenoid saponins from the seeds of Vaccaria segetalis. Journal of Asian Natural Products Research, 2(3), 187-193.
Selvarajan, E., & Mohanasrinivasan, V. J. M. L. (2013). Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Materials Letters, 112, 180-182.
Slaghenaufi, D., Perello, M. C., Marchand, S., & de Revel, G. (2016). Quantification of megastigmatrienone, a potential contributor to tobacco aroma in spirits. Food Chemistry, 203, 41-48.
Sre, P. R., Reka, M., Poovazhagi, R., Kumar, M. A., & Murugesan, K. (2015). Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 1137-1144.
Thi, T. U. D., Nguyen, T. T., Thi, Y. D., Thi, K. H. T., Phan, B. T., & Pham, K. N. (2020). Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC advances, 10(40), 23899-23907.
Tian, M., Huang, Y., Wang, X., Cao, M., Zhao, Z., Chen, T., ... & Zhou, X. (2021). Vaccaria segetalis: a review of ethnomedicinal, phytochemical, pharmacological, and toxicological findings. Frontiers in Chemistry, 9, 666280.
Ulanowska, M., & Olas, B. (2021). Biological properties and prospects for the application of eugenol—a review. International Journal of Molecular Sciences, 22(7), 3671.
Willenborg, C. J., & Johnson, E. N. (2013). Influence of seeding date and seeding rate on cow cockle, a new medicinal and industrial crop. Industrial Crops and Products, 49, 554-560.
Zhou, G., Wu, H., Wang, T., Guo, R., Xu, J., Zhang, Q., Tang, L. & Wang, Z. (2017). C-glycosylflavone with rotational isomers from Vaccaria hispanica (Miller) Rauschert seeds. Phytochemistry Letters, 19, 241-247