Document Type : Research Paper

Authors

1 Associate Professor, Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

2 Master's degree in Cellular and Developmental Biology, Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

Abstract

Introduction: Plant growth regulators exert significant effects on the anatomical structure, differentiation of floral primordia, and development of reproductive organs in plants. This experiment investigated the impacts of auxin and gibberellin on the vegetative and reproductive development of cucumber (Cucumis sativus L. cv. Supernia F1).
Materials and methods: A factorial experiment was conducted as the basis of a randomized complete block design with three replications. The treatments included naphthalene acetic acid at concentrations of 0, 50, and 100 mg l-1, and gibberellic acid at concentrations of 0, 25, and 50 mg l-1, which were sprayed on the plants every ten days until the end of flowering.
Results and discussion: Anatomical studies had significant impacts on the thickness of the cortex layers, the phloem and xylem regions, the diameter of the xylem opening of the root, stem, and leaf, the thickness of the petiole and pith of the stem and leaf trichome at various hormonal levels. The investigation of male reproductive organs revealed that at high concentrations of both hormones, earlier nuclear division occurred during the microspore mother cell and tetrad stages. Additionally, callose walls were observed not only surrounding the tetrad cells and microspores but also around the mature pollen grains, exhibiting high persistence that prevented their separation. It can be concluded that high concentrations of the two hormones inhibited the production of normal pollen grains and anther dehiscence, whereas intermediate concentrations of both hormones accelerated pollen development.

Keywords

Main Subjects

Aloni, R. (1995). The induction of vascular tissues by auxin and cytokinin. Plant Hormones. Kluwre, Dordrecht. PP.531-546
Amanda, D., Frey, F.P., Neumann, U., Przybyl, M., Simura, J., Zhang, Y., Chen, Z. and Acosta1, I.F. (2022). Auxin boosts energy generation pathways to fuel pollen maturation in barley. Current Biology 32(8): 1798-1811.  https://doi.org/10.1016/j.cub.2022.02.073
Basiri, E., Jafari Marandi S., Arbabian, S., Majd, A. and Malboob, M.A. (2021). The effect of fertile biofertilizer 2 and potassium phosphate on the development of vegetative and reproductive organs of Arabidopsis thaliana L. The Quarterly Scientific Journal of Applied Biology, 34(4) 70: 24-49. (In Persian.)
Cecchetti, V., Altamura, M.M., Falasca, G., Costantino, P. and Cardarelli, M. (2008). Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell, 20: 1760-1774.
Cecchetti,V.,  Celebrin, D.,  Napoli, N.,  Ghelli, R.,  Brunetti, P.,   Costantino, P. and Cardarelli, M. (2018). An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis, New Phytologist, 213(3): 1194-1207. https://doi.org/10.1111/nph.14207
Chen, S.S., Liu, W., See, L., Mao, Y.H.B., Gan, C. and Yu, Y.H. (2018). OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nature Plants, 4: 495-504. https://doi.org/10.1038/s41477-018-0175-0
Cucinotta, M., Cavalleri, A., Chandler, J.W. and Colombo, L. (2021). Auxin and flower development: A blossoming field. Cold Spring Harbor Perspectives in Biology, 13: a039974, http://doi.org/10.1101/cshperspect.a039974
Du, J., Wei, H., Song, X., Zhang, L. and Hu, J. (2024). PdRabG3f interfered with gibberellin-mediated internode elongation and xylem developing in poplar. Plant Science 343,112074. https://doi.org/10.1016/j.plantsci.2024.112074
FAO.https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/fr
Feng, X.L., Ni1, W.M., Elge, S., Roeber, B.M., Xu, Z.H. and Xue, H.W. (2006). Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Molecular Biology, 61: 215–226.
Francis, D. (2007). The plant cell cycle. New Phytology, 174: 261–278.
Jie, W., Shuai, L., Chen, C., Qi-qi, L., Hui-min1, Z., Hui-ming, C. and Jin-jing, S. (2023). A novel mutation in ACS11 leads to androecy in cucumber. Journal of Integrative Agriculture, 22(11): 3312–3320. https:/10.1016/j.jia.2023.03.003
Johnsson C.,Jin X., Xue W.Y., Dubreuil C., Lezhneva L. and Fischer U. (2019). The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. Physiologia Plantarum 165: 673-689. https://doi.org/10.1111/ppl.12766
Iranbakhsh, A.R., Ebadi, M. and Majd, A. (2007). Investigating the effect of some growth regulators on vegetative production and crop yield of Cucumis sativus L parthenocarp in greenhouse conditions. Journal of Sciences of Islamic Azad University (Biology), 66(17): 101-20 (In Persian)
Kater. M.M., Franken. J., Carney. K.J., Colombo. L. and Angenent. G.C. (2001). Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell, 13: 481–493.
Li, J.J., Tang, B., Li, Y.X., Li, C.G., Guo, M., Chen, H.Y., Han, S.C., Li, J., Lou, Q.J., Sun, W.Q., Wang, P., Guo, H. F., Zhang, L. and Li, Z.C. (2021). Rice SPL10 positively regulates trichome development through expression of HL6 and auxin-related genes. Journal of Integrative Plant Biology, 63: 1521–1537.
Liu, J.Q., Chen, K., Zhang, Z.Z, Chen, X.L. and Wang, A.X. (2016). Effects of exogenous GA, MeJA, IAA, SA and KT on trichome formation in tomato. Acta Horticulturae Sinica, 43, 2151–2060. (in Chinese)
Lyndon, R.F. (2012). Plant Development: The cellular basis. Springer Press, 320 Pp, Netherlands.
Mäkilä, R., Wybouw, B., Smetana, O. and Mähönen, A.P. (2023). Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. Nature Plants 9(4): 1-14. https://doi.org/10.1038/s41477-023-01360-w
Qi, T.C., Huang, H., Wu, D.W., Yan, J.B., Qi, Y.J. and Xie, D.X. (2014). Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. The Plant Cell, 26, 1118-1133.
Sanderson, J.B. (1994). Biological microtechnique: Garland Science Press. Santana-Buzzy
Sharif, R., Zhu, Y.,  Huang, Y., Sohail, H., Li, S., Chen, X., and Qi, X. (2024). microRNA regulates cytokinin induced parthenocarpy in cucumber (Cucumis sativus L.). Plant Physiology and Biochemistry 212, 108681
Wang, C., Xin, M.,   Zhou, X.,  Liu, W.,  Liu, D. and Qin, W. (2018). Transcriptome profiling reveals candidate genes associated with sex differentiation induced by night temperature in cucumber. Scientia Horticulturae 232, 162-169. https://doi.org/10.1016/j.scienta.2017.12.018
Wang, S., Zhang, Y., Fang, Z., Zhang, Y., Song, Q., Hou, Z., Sun, K., Song, Y., Li, Y. and Ma, D. (2019). Cytological and proteomic analysis of wheat pollen abortion induced by chemical hybridization agent. International Journal of Molecular Sciences , 20. https://doi.org/10.3390/ijms20071615
Yang, Y., Huang, Y. Ren, A., Wan, Y., Liu, Y. (2023). Xylem development and phloem conductivity in relation to the stem mechanical strength of Paeonia lactiflora. Journal of Plant Physiology  283,   153963.   https://doi.org/10.1016/j.jplph.2023.153963
Yang, S., Xue, S., Shan, L., Fan, S., Sun L., Dong, Y., et al. (2024). The CsTM alters multicellular trichome morphology and enhances resistance against aphid by interacting with CsTIP1;1 in cucumber. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2024.04.008
Yaung, C., Xu, Z., Song, J., Conner, K., Vizcay, Barrena G. and Wilson. Z.A. (2007). Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell, 19: 534–548.
Zhao, Z., Zhang, Y., Liu, X., Zhang, X., Liu, S., Yu, X., Ren, Y., Wang, H. and Wan. J. (2013). Developmental cell a role for a dioxygenase in auxin metabolism and reproductive development in rice. https://doi.org/10.1016/j.devcel.2013.09.005
Zhang, H. M., Li, S., Yang L, Cai, G. H., Chen, H. M., Gao, D. L., Lin T, Cui, Q. Z., Wang, D. H., Li, Z., Cai, R., Bai, S. N., Lucas, W. J., Huang, S. W., Zhang, Z. H. and Sun, J. J. (2021). Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. The Plant Cell, 33, 306–321.
Zheng Y., Wang D., Ye S., Chen W., Li G., Xu Z., Bai Sh. and Zhao F. (2021). Auxin guides germ-cell specification in Arabidopsis anthers.  PNAS , 118 : 22, e2101492118,  https://doi.org/10.1073/pnas.2101492118
Zheng, S., He, J., Lin, Z., Zhu, Y., Sun, J., Li, J. (2020).  Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in Populus. Plant Communications 2(5): 100134. https://doi.org/10.1016/j.xplc.2020.100134