Document Type : Research Paper

Authors

1 Assistant Professor, Department of Horticultural Science Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran

2 Associate Professor, Department of Horticultural Sciences Engeneering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

10.22051/jab.2023.43483.1563

Abstract

Introduction: Savory, a medicinal and aromatic plant from the mint family (Lamiaceae), has economic importance and is used in various industries such as food and cosmetics. Low doses of gamma radiation can have beneficial effects on the germination process and biochemical composition of plants, especially the medicinal types. Methods: In this study, irradiation of Satureja hortensis seeds with different doses of gamma ray (0, 15, 30, 60 and 90 Gray) was performed at the Nuclear Agriculture Research School, Karaj, Iran. Afterwards, some seed germination factors, morphological and biochemical characteristics of the plants were studied. Phytochemical content of the extracts such as total phenol and flavonoid were investigated using Folin-Ciocalteu and Aluminum Chloride colorimetric methods, respectively. Results and discussion: The results showed that the highest germination percentage and the lowest seed vigour index were obtained in 90 Gray treatment. By increasing the radiation dose up to 30 Gray, the amount of total phenol and flavonoid compounds (antioxidant molecules) as well as inhibitory property of DPPH free radicals raised, but the further enhancement of radiation dose, up to 90 Gray had a negative effect on the values of the mentioned factors. According to the obtained results, irradiation with a dose of 30 Gray on savory seeds can be suggested, due to obtain a useful crop for health, with maximum valuable metabolites, like phenols and flavonoids.

Keywords

Main Subjects

Alikamanoglu, S., Yaycili, O. and Sen, A. (2011). Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biological Trace Element Research, 141: 283-293.
Al‐Rumaih, M. M. and Al‐Rumaih, M. M. (2008). Influence of ionizing radiation on antioxidant enzymes in three species of Trigonella. American Journal of Environmental Sciences, 4: 151-156.
Al-Salhi, M., Ghannam, M. M., Al-Ayed, M. S., El-Kameesy, S. U. and Roshdy, S. (2004). Effect of gamma irradiation on the biophysical and morphological properties of corn. Nahrung, 48: 95-98.
Asghari, B., Mafakheri, S., Zengin, G., Dinparast, L. and Bahadori, M.B. (2020). In-depth study of phytochemical composition, antioxidant activity, enzyme inhibitory and antiproliferative properties of Achillea filipendulina: a good candidate for designing biologically-active food products. Journal of Food Measurement and Characterization, 14:  2196-2208.
Ashraf, M. and Foolad, M. (2005). Pre- sowing seed treatment- a shotgun approach to improve germination growth a crop yield under saline and none- saline conditions. Advances in Agronomy, 88(5), 223- 271.
Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27: 84‐93.
Badr, A., Ahmed, H. I. S., Hamouda, M., Halawa, M. and Elhiti, M.A. (2014). Variation in growth, yield and molecular genetic diversity of m2 plants of cowpea following exposure to gamma radiation. Life Science Journal, 11: 10-19.
Bagheri, L., Amiri-Khah, R., Noori, M. and mozafari, K. (2017). Effect of gamma irradiation on growth and determine optimum dose in order to induce genetic variation in landrace rice (Oryza sativa L.) Cultivars. Journal of Crop Breeding, 9: 130-138.
Bahmani, M., Yousefi, S. and Kartoolinejad, D. (2016). The Effects of Gamma Radiation on Seed Germination and Vigour of Caper (Capparis spinosa var. parviflora) Medicinal Plant. Iranian Journal of Seed Research, 3: 15-26. (In Persian).
Bedell, E. P. (1998). Seed science and technology (Indian forestry species). Allied Publishers LTD., New Dehli.
Bezic, N., Dunkic, V., and Elma, V. (2013). Antiphytoviral activity of essential oils of some Lamiaceae species and there most important compounds on CMV and TMV. Microbial Pathogens and Strategies for Combating them. Science, Technology and Education, 8: 982-988.
Bhat, R., Sridhar, K. R., and Tomita-Yokotani, K. (2007). Effect of ionizing radiation on antinutritional features of velvet bean seeds (Mucuna pruriens). Food Chemistry, 103: 860-866.
Bhosale, R. S. and More, A. D. (2014). Effect of gamma radiation on seed germination, seedling height and seedling injury in Withania somnifera (L.) Dunal. International Journal of Life Sciences, 2: 226-228.
Biradar, K. S., Salimath, P. M. and Ravikumar, R. L. (2010). Genetic variability for seedling vigour, yield and yield Components in local germplasm collections of Greengram (Vigna radiata (L.) wilczek). Kamataka Journal of Agricultural Sciences, 20: 608-609.
Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B. and Majdabadi, A. (2010). Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pakistan Journal of Botany, 42: 2281-2290.

Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity.  Food Science and Technology, 28 : 25-30.

Dangles, O. (2012). Antioxidant activity of plant phenols: Chemical mechanisms and biological significance. Current Organic Chemistry, 16: 692-714.
Demir Kaya, M., Okçu, G., Atak, M., Çikili, Y. and Kolsarici, O. (2006). Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24: 291-295.
Esnault, A. M., Legue, F. and Chenal, C. (2010). Ionizing radiation: advances in plant response. Environmental and Experimental Botany, 68: 231-237.
Farooq, M., Aziz, T., Basra, S. M. A., Cheema M. A., and Rehman, H. (2008). Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. Journal of Agronomy and Crop Science, 194: 161-168.
Gheshlaghpour, J., Asghari, B., Khademian, R. and Sedaghati, B. (2021). Silicon alleviates cadmium stress in basil (Ocimum basilicum L.) through alteration of phytochemical and physiological characteristics. Industrial Crops and Products, 163: 113338-113352.
Gill, S. S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.  Plant Physiology and Biochemistry, 48: 909-930.
Guo, C. J., Cao, G., Sofic, E. and Prior, R. P. (1997). High performance liquid chromatography coupled with coulometric array detection of electroactive components in fruits and vegetables: relationship to oxygen radical absorbance capacity. Journal of Agriculture and Food Chemistry, 45: 1787-1796.
Hadian, J., Akramian, M., Heydari, H., Mumivand, H. and Asghari, B. (2011). Composition and in vitro antibacterial activity of essential oils from four Satureja species growing in Iran. Natural Product Research. 26: 98-108.
Hala Ahmed Abdolla, M., Eltayeb Elhag, A., Gamma Abdelgadir, M. O., Hiba Abdelrahman, A. and Jutta, L. M. (2010). Microbial load and phytochemicals stability of Camel hay (Cymbopogon schoenanthus L.) leaves as affected by gamma irradiation. Agriculture Journal,  1: 662-670.
Hameed, A., Mahmud, T. S., Atta, B. M., Haq, M. A. and Sayed, H. (2008). Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pakistan Journal of Botany, 40: 1033–1041.
Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics, 96: 67-202.
Hong, J. M. J., Kim, D. Y., Ahn, J. W., Kang, S. Y., Seo, S.W. and Kim, J. B. (2018). Comparison of radiosensitivity response to acute and chronic gamma irradiation in colored wheat. Genetics and Molecular Biology, 41: 611-623.
Iloki-Assanga S. B., Lewis-Luján, L. M , Lara-Espinoza, C. L., Gil-Salido, A. A., Fernandez-Angulo, D., Rubio-Pino, J. L. and Haines, D. D. (2015). Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res Notes, 8: 1-14.
 Kafi, M. (2013). Biochemical response of two wheat cultivars (Triticum aestivum L.) to gamma radiation. Pakistan Journal of Botany, 45: 473-477.
Khan, M. M., Din, R., Qasim, M., Jehan, S. and Iqbal, M. M. (2003). Induced mutability studies for yield and yield related characters in three wheat (Triticum aestivum L.) varieties. Asian Journal of Plant Sciences, 2: 1183-1187.
Kim, J. H., Baek, M. H., Chung, B. Y., Wi, S. G. & Kim, J. S. (2004). Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. Journal of Plant Biology, 47: 314-321.
Kiong, A. A., Ling Pick, S. H., Grace, L. and Harun. A. R. (2008). Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. American-Eurasian Journal of Sustainable Agriculture, 2: 1‐15.
Korkina, L. G. (2007). Phenylpropanoids as naturally occurring antioxidants from plant defence to human health. Cellular and Molecular Biology. 53: 15-25.
 
Koseki, P. M., Villavicencio, A. L. C. H., Brito, M. S., Nahme, L. C., Sebastiao, K. I. and Rela, P. R. (2002). Effect of irradiation in medicinal and eatable herbs. Radiation Physics Chemistry, 63: 681-684.
Kovacs, E. and Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells.
Micron, 33: 199-210.
Kulkarni, M. G., Street, R. A. and Staden, J.V. (2007). Germination and seedling growth requirements for propagation of Diosscorea dregeana (Kunth) Dur. and Schinz Atuberous medicinal plant. South African Journal of Botany, 73: 131-137.
Laanen, P., Cuypers, A., Saenen, E. and Horemans, N. (2023). Flowering under ionizing radiation conditions and its regulation through epigenetic mechanisms. Plant physiology and biochemistry, 196: 246-259.
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., and Chen, S. (2016). An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules, 21: 1-19.
Ling, A. P. K., Chia, J. Y., Hussein, S. and Harun, A. R. (2008). Physiological responses of Citrus sinensis to gamma irradiation. World Applied Sciences Journal, 5: 12-19.
Lois, R. (1994). Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Ambidopsis thaliana L., Planta, 194: 498-503.
Mahmoud, F. A. N. (2002). Effect of gamma radiation and some agrochemicals on germination, growth and flowering of Delphinium ajacis and Mathiola incana Plants. MSc. Dissertation, Faculty of Agriculture, Moshtohor, Zagazig University, Egypt.
Malencic, D., Cvejic, J. and Miladinovic, J. (2012). Polyphenol content and antioxidant properties of colored soybean seeds from Central Europe. Journal of Medical Food, 15:89-95.
Majd, P. and Ardekani, M. (2010). Nuclear techniques in agricultural sciences (3th ed.). Inc. Tehran University. 264p (In Persian).
Marcus, D., Damian, G., Cosma, C. and Cristea, V. (2013). Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Journal of Biological Physics, 39: 625-634. 
Melki, M. and Dahmani, T. H. (2009). Gamma irradiation effects on Durum Wheat (Triticum durum Desf.). Pakistan Journal of Biological Sciences, 12: 1531-1534.
Mejri, S., Hemissi, I., Brinsi, C., Asmi1, A., Saidi, M. and Mabrouk, Y. (2021). Dose Dependent Effects of Gamma Radiation on Growth Parameters of Lens culinaris Medikus subsp. Culinaris. Acta Scientific Agriculture, 5: 83-89.  
Minea, R., Nemtanu, M. R., Manea, S. and Mazila, E. (2007). Use of electron beam irradiation to improve the microbiological safty of Hippophae rhamnoides. Instrum methods physics research. 580: 792-794.
Moghaddam, S. S., Jaafar, H., Ibrahim, R., Rahmat, A., Aziz, M. A. and Philip, E. (2011). Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules, 16: 4994-5007.
Mohajer, S., Taha, R. M., Lay, M. M., Khorasani Esmaeili, A. and Khalili, M. (2019). Stimulatory effects of gamma irradiation on phytochemical properties, mitotic behavior, and nutritional composition of sainfoin (Onobrychis viciifolia Scop.). The Scientific World Journal, 2019: 1-9.
Moussa, J. P. (2006). Role of gamma irradiation in regulation of NO3 level in rocket (Eruca vescaria subsp. sativa) plants. Russian Journal of Plant Physiology, 53: 193-197.
Muthausamy, A., Vasanth, K. and Jayabalan, N. (2003). Response of physiological and biochemical components in Gossypium hirsutum L. to mutagens. Journal of Nuclear Agriculture and Biology. 32: 44-51.
Nassar, A. H., Hashim, M. F., Hassan, N. S. and Abo-Zaid, H. (2004). Effect of gamma irradiation and phosphorus on growth and oil production of chamomile (Chamomilla recutita L. Rauschert). International Journal of Agriculture and Biology, 6: 776-780.
Navarrete, M. H., Carrera, P., de Miguel, M. and de la Torre, C. (1997). A fast comet assay variant for solid tissue cells. The assessment of DNA damage in higher plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 389: 271-277.
Nazzaro, F., Fratianni, F., Picariello, G., Coppola, R., Reale, A. and Luccia, A.D. (2007). Evaluation of gamma rays influence on some biochemical and microbiological aspects in black truffles. Food Chemistry, 103: 344-354.
Nepal, S., Ojha, B. R., Meador, A. S., Gaire, S. P. and Shilpakar, C. (2014). Effect of gamma rays on germination and photosynthetic pigments of maize (Zea mays L.) inbreds. International Journal of Research, 1: 511-525.
Noreen, Z. and Ashraf, M. (2009). Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environmental and Experimental Botany, 67: 395-402.
Panwar, P. and Bhardwaj, S.D. (2005). Handbook of practical forestry, Agro biosystem, India.
Peng, Q. and Zhou, Q. (2008). Effect of lanthanum on the flavonoids in the soybean seeding under ultraviolet-B stress: II effect on content of flavonoids. Journal of Agro-Environment Science, 29: 2024-2027.
Preussa, S. B. and Britta, A. B. (2003). A DNA-damage-induced cell cycle heckpoint in Arabidopsis. Genetics, 164: 323-334.
Rahimi, M. M. and Bahrani, A. (2011). Effect of gamma irradiation on qualitative and quantitative characteristics of Canola (Brassica napus L.). Middle-East Journal of Scientific Research, 8: 519-525.
Rana, S., Kumar, R., Sultana, S. and Sharma, R. K. (2010). Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses. Journal of Pharmacy and Bioallied Sciences, 2: 189-196.
Shikazono, N., Suzuki, C., Kitamura, S., Watanabe, H., Tano, S. and Tanaka, A. (2005). Analysis of mutations induced by carbon ions in Arabidopsis thaliana. Journal of Experimental Botany, 56: 587-596.
Shukla, R. and Datta, S. (1993). Mutation studies on early and late varieties of garden chrysanthemum. Journal of Nuclear Agriculture and Biology, 22: 138-142.
Soriani, R. R., Satomi, L. C., de Jesus, T. and Pinto, A. (2005). Effects of ionizing radiation in ginkgo and guarana. Radiation Physics and Chemistry Journal, 73: 239-242.
Timperio, A. M., Egidi, M.G. and Zolla, L. (2008). Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of Proteomics, 71: 391-411.
Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Physiology and metabolism. 5: 218-223.
Wi, S. G., Chung, B. Y., Kim, J. H., Baek, M. H., Yang, D. H. and Lee, J. W. (2005). Ultrastructural changes of cell organelles in Arabidopsis stems after gamma irradation. Journal Plant Biology, 48: 195-200.