Document Type : Research Paper

Authors

1 Associate Professor.Department of Animal Sciences, Faculty of Basic Sciences, Mazandaran University, Babolsar, Mazandaran, Iran

2 MSc student, Department of Animal Sciences, Faculty of Basic Sciences, Mazandaran University, Babolsar, Mazandaran, Iran

3 Assistant Professor.Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol,

4 Graduated, Department of Polymer Chemistry, Faculty of Chemistry, Mazandaran University, Babolsar, Mazandaran, Iran

10.22051/jab.2023.43921.1578

Abstract

Introduction: Carbon tetrachloride (CCl4) is a common chemical solvent that causes oxidative stress and brain damage. Alpha-pinene with antioxidant properties plays an important role in reducing oxidative stress and improving inflammation. However, Alpha-pinene has low bioavailability due to low solubility. The purpose of this study is to investigate the protective effects of Alpha-pinene nanophytosome on brain damage caused by CCl4 in male rats. Metods: In this research, 35 male Wistar rats were divided into five groups control, Alpha-pinene nanophytosome (50 mg/kg ) for 14 days, CCl4 (1 mg/kg) twice a week for 14 days and two CCl4 treated groups with Alpha-pinene and Alpha-pinene nanophytosome (50 mg/kg ) for 14 days. Finally, the levels of malondialdehyde (MDA) and glutathione (GSH) as well as the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes were investigated. Results and discussion: Our results revealed that, the level of GSH (P<0.001) and the activity of antioxidant enzymes (P<0.01) in the brain of rats receiving CCl4 significantly decreased compared to the control group, while Alpha-pinene nanophytosome increased significantly. The level of MDA in the brain of rats receiving CCl4 increased significantly (P<0.001) compared to the control group, while Alphapinene nanophytosome significantly reduced MDA level. The findings of this research show that Alpha-pinene nanophytosome can protects the brain against oxidative stress and damage caused by CCl4.

Keywords

Main Subjects

Al-Askar, M., Bhat, R. S., Selim, M., Al-Ayadhi, L., & El-Ansary, A. (2017). Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC complementary and alternative medicine, 17:1-11.
Allenspach, M., & Steuer, C. (2021). α-Pinene: A never-ending story. Phytochemistry, 190: 112857.
Altinoz, E. Y. Ü. P., Erdemli, M. E., Gul, M. E. H. M. E. T., Aksungur, Z., Gul, S. E. M. İ. R., Bag, H. G., ... & Turkoz, Y. U. S. U. F. (2018). Neuroprotection against CCl4 induced brain damage with crocin in Wistar rats. Biotechnic & Histochemistry, 93: 623-631.
Bouzenna, H., Hfaiedh, N., Giroux-Metges, M. A., Elfeki, A., & Talarmin, H. (2017). Potential protective effects of alpha-pinene against cytotoxicity caused by aspirin in the IEC-6 cells. Biomedicine & pharmacotherapy, 93: 961-968.
Fukuzawa, K., & Tokumurai, A. (1976). Glutathione peroxidase activity in tissues of vitamin E-deficient mice. Journal of Nutritional Science and Vitaminology, 22: 405-407.
Genet, S., Kale, R. K., & Baquer, N. Z. (2002). Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonella foenum graecum). Molecular and cellular biochemistry, 236:7-12.
Ghanbarzadeh, B., Babazadeh, A., & Hamishehkar, H. (2016). Nano-phytosome as a potential food-grade delivery system. Food bioscience, 15:126-135.
Jain, N., Gupta, B. P., Thakur, N., Jain, R., Banweer, J., Jain, D. K., & Jain, S. (2010). Phytosome: a novel drug delivery system for herbal medicine. Int J Pharm Sci Drug Res, 2: 224-228.
Khan-Mohammadi-Khorrami, M. K., Asle-Rousta, M., Rahnema, M., and Amini, R. (2022). Neuroprotective effect of alpha-pinene is mediated by suppression of the TNF-α/NF-κB pathway in Alzheimer's disease rat model. J. Biochem. Mol. Toxicol. 36:e23006. doi: 10.1002/jbt.23006.
Kim, M. S., Lee, J. I., Lee, W. Y., & Kim, S. E. (2004). Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson's disease. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(8), 663-666.
Moghaddam, A. H., Eslami, A., khanjani Jelodar, S., Ranjbar, M., & Hasantabar, V. (2023). Preventive effect of quercetin-Loaded nanophytosome against autistic-like damage in maternal separation model: the possible role of Caspase-3, Bax/Bcl-2 and Nrf2. Behavioural Brain Research, 114300.
Mm, B. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.
Mughal, T. A., Saleem, M. Z., Ali, S., Anwar, K. K., Bashir, M. M., Babar, M., & Khan, M. A. (2019). Evaluation of Hepatotoxicity of Carbon Tetrachloride and Pharmacological Intervention by Vitamin E in Balb C Mice. Pakistan Journal of Zoology, 51(2).
Okoro, I. O., Kadiri, H. E., & Inegbedion, A. (2019). Ameliorative effects of Allium cepa extract on carbon tetrachloride neurotoxicity in rat. Thai Journal of Pharmaceutical Sciences, 43(1).
Panahi Kokhdan, E., Ahmadi, K., Sadeghi, H., Sadeghi, H., Dadgary, F., Danaei, N., & Aghamaali, M. R. (2017). Hepatoprotective effect of Stachys pilifera ethanol extract in carbon tetrachloride-induce hepatotoxicity in rats. Pharmaceutical Biology, 55(1), 1389-1393.
Ritesh, K. R., Suganya, A., Dileepkumar, H. V., Rajashekar, Y., & Shivanandappa, T. J. T. R. (2015). A single acute hepatotoxic dose of CCl4 causes oxidative stress in the rat brain. Toxicology reports, 2: 891-895.
Shaalan, S., Radwan, O. K., & Saleh, H. (2017). Role of wheat germ oil against carbon tetrachloride-induced neurotoxicity in brain tissues of adult male mice. Egyptian Journal of Zoology, 67: 1-18.
Shriram, R. G., Moin, A., Alotaibi, H. F., Khafagy, E. S., Al Saqr, A., Abu Lila, A. S., & Charyulu, R. N. (2022). Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin. Pharmaceuticals, 15(7): 790.
Sharma, M., & Gupta, Y. K. (2002). Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life sciences, 71:2489-2498.
Taamalli, A., Feriani, A., Lozano-Sanchez, J., Ghazouani, L., El Mufti, A., Allagui, M. S., ... & Arráez-Roman, D. (2020). Potential hepatoprotective activity of super critical carbon dioxide olive leaf extracts against CCl4-induced liver damage. Foods, 9: 804.
Udavant P, Gurav P, Kanade G, Dashputre N, Khairnar S. Evaluation of Hepatoprotective and Nephroprotective Effect of Α-Pinene on Wistar Albino Rat. Biomedical and Pharmacology Journal. 2023 Mar 21;16(1):103-12.
Weber, L. W., Boll, M., & Stampfl, A. (2003). Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Critical reviews in toxicology, 33:105-136.
Zaib, S., & Khan, M. R. (2014). Protective effect of Cucurbita pepo fruit peel against CCl4 induced neurotoxicity in rat. Pak J Pharm Sci, 27:1967-73.
Zargar, S., & Wani, T. A. (2021). Protective role of quercetin in carbon tetrachloride induced toxicity in rat brain: biochemical, spectrophotometric assays and computational approach. Molecules, 26:7526.