[1] Yang, L., Wei, J., Ma, Z., Song, P., Ma, J., Zhao, Y., … & Wang, X. (2019). The fabrication of micro/nano structures by laser machining. Nanomaterials, 9(12), 1789. https://doi.org/10.3390/nano9121789
[2] De Almeida, J. M. M. M., Vasconcelos, H., Jorge, P. A. S., & Coelho, L. (2018). Plasmonic optical fiber sensor based on double step growth of gold nano-islands. Sensors, 18(4), 1267. https://doi.org/10.3390/s18041267
[3] Bhalla, N., Jain, A., Lee, Y., Shen, A. Q., & Lee, D. (2019). Dewetting metal nanofilms—Effect of substrate on refractive index sensitivity of nanoplasmonic gold. Nanomaterials, 9(11), 1530. https://doi.org/10.3390/nano9111530
[4] Tugulea, A. M., Bérubé, D., Giddings, M., Lemieux, F., Hnatiw, J., Priem, J., & Avramescu, M. L. (2014). Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation. Environmental science and pollution research, 21, 11823–11831.
[5] Dhanjal, D. S., Mehra, P., Bhardwaj, S., Singh, R., Sharma, P., Nepovimova, E., … & Kuca, K. (2022). Mycology-nanotechnology interface: applications in medicine and cosmetology. International journal of nanomedicine, 17, 2505–2533.
[6] Mohamed, D. S., Abd El-Baky, R. M., Sandle, T., Mandour, S. A., & Ahmed, E. F. (2020). Antimicrobial activity of silver-treated bacteria against other multi-drug resistant pathogens in their environment. Antibiotics, 9(4), 181. https://doi.org/10.3390/antibiotics9040181
[7] Chung, I.-M., Park, I., Seung-Hyun, K., Thiruvengadam, M., & Rajakumar, G. (2016). Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale research letters, 11, 1–14.
[8] Alves, M. F., Paschoal, A. C. C., Klimeck, T. D. F., Kuligovski, C., Marcon, B. H., de Aguiar, A. M., & Murray, P. G. (2022). Biological synthesis of low cytotoxicity silver nanoparticles (AgNPs) by the fungus chaetomium thermophilum—sustainable nanotechnology. Journal of fungi, 8(6), 605. https://doi.org/10.3390/jof8060605
[9] Bharti, S., Mukherji, S., & Mukherji, S. (2020). Extracellular synthesis of silver nanoparticles by Thiosphaera pantotropha and evaluation of their antibacterial and cytotoxic effects. 3 biotech, 10, 1–12.
[10] Guilger-Casagrande, M., & Lima, R. de. (2019). Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in bioengineering and biotechnology, 7, 287. https://www.frontiersin.org/articles/10.3389/fbioe.2019.00287/full
[11] Ashengroph, M. (2013). Isolation and characterization of a native strain of Aspergillus niger ZRS14 with capability of high resistance to zinc and its supernatant application towards extracellular synthesis of zinc oxide nanoparticles. Journal of microbial biology, 2(7), 29-44. (In Persian). https://bjm.ui.ac.ir/article_19499.html?lang=en
[12] Hosseinzadeh, F., Rastegar, S. O., & Ashengroph, M. (2021). Bioleaching of rare earth elements from spent automobile catalyst as pretreatment method to improve Pt and Pd recovery: Process optimization and kinetic study. Process biochemistry, 105, 1–7.
[13] Bolbanabad, E. M., Ashengroph, M., & Darvishi, F. (2020). Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity. Process biochemistry, 94, 319–328.
[14] Raudabaugh, D. B., Tzolov, M. B., Calabrese, J. P., & Overton, B. E. (2013). Synthesis of silver nanoparticles by a Bryophilous rhizoctonia species. Nanomaterials and nanotechnology, 3. https://doi.org/10.5772/56207%0A
[15] Patil, M. P., & Kim, G. D. (2018). Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids and surfaces b: biointerfaces, 172, 487–495.
[16] Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V, Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials letters, 61(6), 1413–1418.
[17] Gade, A., Ingle, A., Whiteley, C., & Rai, M. (2010). Mycogenic metal nanoparticles: progress and applications. Biotechnology letters, 32, 593–600.
[18] Sagar, G., & Ashok, B. (2012). Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. European journal of experimental biology, 2(5), 1654–1658.
[19] Gaikwad, S. C., Birla, S. S., Ingle, A. P., Gade, A. K., Marcato, P. D., Rai, M., & Duran, N. (2013). Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. Journal of the Brazilian chemical society, 24, 1974–1982.
[20] Farrag, H. M. M., Mostafa, F. A. A. M., Mohamed, M. E., & Huseein, E. A. M. (2020). Green biosynthesis of silver nanoparticles by Aspergillus niger and its antiamoebic effect against Allovahlkampfia spelaea trophozoite and cyst. Experimental parasitology, 219, 108031. https://doi.org/10.1016/j.exppara.2020.108031
[21] Shahzad, A., Saeed, H., Iqtedar, M., Hussain, S. Z., Kaleem, A., & Abdullah, R. (2019). Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. Journal of nanomaterials, 2019, 5168698. https://doi.org/10.1155/2019/5168698
[22] Balakumaran, M. D., Ramachandran, R., & Kalaichelvan, P. T. (2015). Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiological research, 178, 9–17.
[23] Ashengroph, M., & Arjmand, R. (2020). Designing matrix l18 trials via taguchi model to improve performance of trichosporon sp. Cas se5 in the selenite removal. Journal of advanced biomedical sciences, 10(1), 2020-2028. (In Persian). https://jabs.fums.ac.ir/article-1-1823-en.html
[24] Dasu, V. V., Panda, T., & Chidambaram, M. (2003). Determination of significant parameters for improved griseofulvin production in a batch bioreactor by Taguchi’s method. Process biochemistry, 38(6), 877–880.
[25] Magudapathy, P., Gangopadhyay, P., Panigrahi, B. K., Nair, K. G. M., & Dhara, S. (2001). Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B: condensed matter, 299(1–2), 142–146.
[26] Awwad, A. M., Salem, N. M., Aqarbeh, M. M., & Abdulaziz, F. M. (2020). Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chemistry International, 6(1), 42–48.