Document Type : Research Paper

Authors

1 MSC. Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran

2 Professor. Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar, Iran

3 Assistant Professor.Department of Microbiology, Neyshabur branch Islamic Azad Univercity, Neyshabur, Iran

10.22051/jab.2024.48523.1652

Abstract

Background: Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections, especially in patients hospitalized in intensive care units. Antibiotic resistance and biofilm production are known as two important factors in the pathogenesis of this bacterium.
Methods: 150 clinical samples were collected from patients of Quchan Hospital, the isolates were identified and isolated based on standard microbiological and biochemical methods. Investigation of multidrug resistance (MDR) was done by disk diffusion method. PCR (polymerase chain reaction) technique was used to identify algD, lasR and rhlR genes.
Findings: According to the obtained results, the percentage of resistance to cefixime antibiotic was 86% and gentamicin was 72%. The lowest percentage of resistance to cefepime was reported with 34%. 20 isolates were insensitive to imipenem and meropenem. 60% of isolates had MDR phenotype. 100% of the isolates carried the algD gene, 90% of the isolates carried the rhlR gene, and finally 95% of the isolates carried the lasR gene.
Conclusion: The results showed high presence of algD, rhlR and lasR genes in Pseudomonas aeruginosa isolates. The high prevalence of genes involved in signaling and biofilm production also affects virulence and antibiotic effectiveness. Pseudomonas aeruginosa biofilm-related infections are considered a major problem in antibiotic therapy. In this regard, other alternatives such as anti-biofilm or antiviral candidates are needed.

Keywords

Main Subjects

 
Aghamollaei H, Azizi Barjini K, Moosazadeh Mogaddam M. Rapid detection of Pseudomonas aeruginosa by PCR method using specific primers of quorum sensing lasI gene. Armaghane-danesh (YUMSJ). ; 18(9): 722-735. 2014. (In Persian).
Ammazzalorso, A., Granese, A., & De Filippis, B. (2024). Recent trends and challenges to overcome Pseudomonas aeruginosa infections. Expert Opinion on Therapeutic Patents, 34(6), 493–509. https://doi.org/10.1080/13543776.2024.2348602
Blanco-Cabra, N., Paetzold, B., Ferrar, T., Mazzolini, R., Torrents, E., Serrano, L., & LLuch-Senar, M. (2020). Characterization of different alginate lyases for dissolving Pseudomonas aeruginosa biofilms. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-66293-2
Costa, E., Matos, O. De, Andriolo, R. B., Rodrigues, Y. C., Valéria, K., & Lima, B. (2018). Review Article Mortality in patients with multidrug-resistant Pseudomonas aeruginosa infections : a meta-analysis. 51(4), 415–420. https://doi.org/10.1590/0037-8682-0506-2017
CLSI supplement M100. Clinical and Laboratory Standards Institute; 2021. https://www.treata.academy/wp-content/uploads/2021/03/CLSI-31-2021.pdf
Dejsirilert, S., Suankratay, C., Trakulsomboon, S., Thongmali, O., Sawanpanyalert, P., Aswapokee, N., & Tantisiriwat, W. (2009). National Antimicrobial Resistance Surveillance, Thailand (NARST) data among clinical isolates of Pseudomonas aeruginosa in Thailand from 2000 to 2005. Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, 92 Suppl 4(May 2014).
El-Khashaab, T. H., Erfan, D. M., & Kamal, A. (2016). Pseudomonas Aeruginosa Biofilm Formation and Quorum Sensing lasR Gene in Patients with Wound Infection. The Egyptian Journal of Medical Microbiology, 25(1), 101–108. https://doi.org/10.12816/0037098
Elnegery, A. A., Mowafy, W. K., Zahra, T. A., & El-Khier, N. T. A. (2021). Study of quorum-sensing LasR and RhlR genes and their dependent virulence factors in Pseudomonas aeruginosa isolates from infected burn wounds. Access Microbiology, 3(3), 000211. https://doi.org/10.1099/ACMI.0.000211
Ghanem, S. M., Abd El-Baky, R. M., Abourehab, M. A., Fadl, G. F., & Gamil, N. G. (2023). Prevalence of Quorum Sensing and Virulence Factor Genes Among Pseudomonas aeruginosa Isolated from Patients Suffering from Different Infections and Their Association with Antimicrobial Resistance. Infection and Drug Resistance, 16, 2371–2385. https://doi.org/10.2147/IDR.S403441
Gill, J., Arora, S., Khanna, S., & Kumar, K. V. S. (2016). Prevalence of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa from a tertiary level Intensive Care Unit. Journal of Global Infectious Diseases, 8(4), 155–159. https://doi.org/10.4103/0974-777X.192962
Groleau, M. C., Taillefer, H., Vincent, A. T., Constant, P., & Déziel, E. (2022). Pseudomonas aeruginosa isolates defective in function of the LasR quorum sensing regulator are frequent in diverse environmental niches. Environmental Microbiology, 24(3), 1062–1075. https://doi.org/10.1111/1462-2920.15745
Hassuna, N. A., Mandour, S. A., & Mohamed, E. S. (2020). Virulence Constitution of Multi-Drug-Resistant Pseudomonas aeruginosa in Upper Egypt Virulence Constitution of Multi-Drug-Resistant Pseudomonas aeruginosa in Upper Egypt. https://doi.org/10.2147/IDR.S233694
Kamali, E., Jamali, A., Ardebili, A., Ezadi, F., & Mohebbi, A. (2020). Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Research Notes, 13(1), 4–9. https://doi.org/10.1186/s13104-020-4890-z
Keegan, N. R., Colón Torres, N. J., Stringer, A. M., Prager, L. I., Brockley, M. W., McManaman, C. L., … Paczkowski, J. E. (2023). Promoter selectivity of the RhlR quorumsensing transcription factor receptor in Pseudomonas aeruginosa is coordinated by distinct and overlapping dependencies on C4- homoserine lactone and PqsE. PLoS Genetics, 19(12), 1–26. https://doi.org/10.1371/journal.pgen.1010900
Kim, Y. A., Park, Y. S., Youk, T., Lee, H., & Lee, K. (2018). Correlation of aminoglycoside consumption and amikacin- or gentamicin-resistant pseudomonas aeruginosa in long-Term nationwide analysis: Is antibiotic cycling an effective policy for reducing antimicrobial resistance? Annals of Laboratory Medicine, 38(2), 176–178. https://doi.org/10.3343/alm.2018.38.2.176
Koleri, J., Petkar, H. M., Hussam, H. A., & Muna, M. A. (2023). Candida auris Blood stream infection- a descriptive study from Qatar. BMC Infectious Diseases, 23(1), 1–7. https://doi.org/10.1186/s12879-023-08477-5
Liao, C., Huang, X., Wang, Q., Yao, D., & Lu, W. (2022). Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. 12(July), 1–17. https://doi.org/10.3389/fcimb.2022.926758
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., … Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Maurice, N. M., Bedi, B., & Sadikot, R. T. (2018). TRANSLATIONAL REVIEW Pseudomonas aeruginosa Bio fi lms : Host Response and Clinical Implications in Lung Infections. 58(4), 428–439. https://doi.org/10.1165/rcmb.2017-0321TR
Mohan, M.S., Salim, S.A., Forgia, N., Busi, S. (2024). Pseudomonas aeruginosa Virulence Factors and Biofilm Components: Synthesis, Structure, Function and Inhibitors. In: Busi, S., Prasad, R. (eds) ESKAPE Pathogens. Springer, Singapore. https://doi.org/10.1007/978-981-99-8799-3_11
Peymani, A., Farivar, T. N., Ghanbarlou, M. M., & Najafipour, R. (2015). Dissemination of Pseudomonas aeruginosa producing blaIMP-1 and blaVIM-1 in Qazvin and Alborz educational hospitals, Iran. Iranian Journal of Microbiology, 7(6), 302–309.
Rajabi, H., Salimizand, H., Khodabandehloo, M., Fayyazi, A., & Ramazanzadeh, R. (2022). Prevalence of algD, pslD, pelF, Ppgl, and PAPI-1 Genes Involved in Biofilm Formation in Clinical Pseudomonas aeruginosa Strains. BioMed Research International, 2022. https://doi.org/10.1155/2022/1716087
Ratajczak, M., Kamińska, D., Nowak-Malczewska, D. M., Schneider, A., & Dlugaszewska, J. (2021). Relationship between antibiotic resistance , biofilm formation, genes coding virulence factors and source of origin of Pseudomonas aeruginosa clinical strains. Annals of Agricultural and Environmental Medicine, 28(2), 306–313. https://doi.org/10.26444/AAEM/122682
Resko, Z. J., Suhi, R. F., Thota, A. V., & Kroken, A. R. (2024). Evidence for intracellular Pseudomonas aeruginosa. Journal of Bacteriology, 206(5). https://doi.org/10.1128/jb.00109-24
Saravi, N. M., & Mousavi, T. (2022). Multidrug-Resistant Virulence Genes in Isolates of Pseudomonas aeruginosa in Iranian Clinical Samples: A Review-Meta-Analysis. Journal of Mazandaran University of Medical Sciences, 32(215), 176–188.
Scoffone V. C., , Trespidi, G.,  Laurent R. Chiarelli, L. R., Barbieri G., and Buroni S. (2019). Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int. J. Mol. Sci. 2019, 20, 1838.
Shah, D. A., Wasim, S., & Abdullah, F. E. (2015). Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from urine samples of Urinary Tract Infections patients in Karachi, Pakistan. Pakistan Journal of Medical Sciences, 31(2), 341–345. https://doi.org/10.12669/pjms.312.6839
Tuon, F. F., Dantas, L. R., Suss, P. H., & Tasca Ribeiro, V. S. (2022). Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens, 11(3). https://doi.org/10.3390/pathogens11030300
Vaez, H., Salehi-Abargouei, A., Ghalehnoo, Z. R., & Khademi, F. (2018). Multidrug resistant Pseudomonas aeruginosa in Iran: A systematic review and metaanalysis. Journal of Global Infectious Diseases, 10(4), 212–217. https://doi.org/10.4103/jgid.jgid_113_17
Zupetic, J., Peñaloza, H. F., Bain, W., Hulver, M., Mettus, R., Jorth, P., … Lee, J. S. (2021). Elastase Activity From Pseudomonas aeruginosa Respiratory Isolates and ICU Mortality. Chest, 160(5), 1624–1633. https://doi.org/10.1016/j.chest.2021.04.015