Document Type : Research Paper

Authors

1 Assistant Professor.Department of Biology, Faculty of Basic Sciences, Imam Hossein University,

2 PhD student.Biology Dept. Faculty of Basic Sciences, Imam Hossein Uni.

3 PhD student.Biology Dept., Faculty of Basic Sciences, Imam Hossein Uni.

4 Associate Professor.Biology Dept. Faculty of Basic Sciences, Imam Hosein Uni.

5 Associate Professor.Center for Biological Sciences and Biotechnology, Malik Ashtar University of Technology

Abstract

Introduction: Ricin is a glycoprotein poison found in the castor plant, which consists of two chains A (RTA) and B (RTB). There are two protein vaccine candidates based on chain A including RiVax and RVEc, against poisoning caused by this toxin. Although various studies have been conducted on the immunogenicity of RiVax alone and with the help of adjuvant, modern controlled release systems such as nanoparticles have not been used to improve the immunogenicity of this protein. The aim of this study is to manufacture polylactic-co-glycolic acid (PLGA) nanoparticles containing RiVax with a slow release rate and to evaluate the physicochemical parameters and immunogenic potential of system compared to protein alone. Methods: First, after purifying RiVax, the water-oil-water emulsion method was used to load RiVax into poly lactic acid-co-glycolic acid (PLGA) nanoparticles. After investigating the physicochemical properties of NPs containing RiVax, they were administered to different groups of mice. Results: The results showed that due to the use of PLGA polymer with a higher ratio of polylactic acid than polyglycolic acid, the protein release pattern from the nanoparticle was slow (12% protein in 40 days) and the immunization results showed a difference in response. Safety of nanoparticles containing RiVax compared to RiVax alone was not demonstrated. Conclusion: it was determined that despite the various researches and positive results related to the nature of immunogenicity enhancement by PLGA nanoparticles, one of the important factors in the enhancement of immunogenicity of these nanoparticles is the ratio of lactic acid to glycolic acid

Keywords

Main Subjects

[1]    Yu, H., Li, S., Xu, N., & Liu, W. (2022). Ricin toxin and its neutralizing antibodies: A review. Toxicon: official journal of the International Society on Toxinology, 214, 47–53. https://doi.org/10.1016/j.toxicon.2022.05.005
[2]    Liu, G., Wu, Z., Peng, Y., Shang, X., & Gao, L. (2022). Integrated Transcriptome and Proteome Analysis Provides Insight into the Ribosome Inactivating Proteins in Plukenetia volubilis Seeds. International journal of molecular sciences, 23(17), 9562. https://doi.org/10.3390/ijms23179562
[3]    Iglesias, R., Russo, R., Landi, N., Valletta, M., Chambery, A., Di Maro, A., Bolognesi, A., Ferreras, J. M., & Citores, L. (2022). Structure and Biological Properties of Ribosome-Inactivating Proteins and Lectins from Elder (Sambucus nigra L.) Leaves. Toxins, 14(9), 611. https://doi.org/10.3390/toxins14090611
[4]    Smallshaw, J. E., Richardson, J. A., Pincus, S., Schindler, J., & Vitetta, E. S. (2005). Preclinical toxicity and efficacy testing of RiVax, a recombinant protein vaccine against ricin. Vaccine, 23(39), 4775–4784. https://doi.org/ 10.1016/j.vaccine.2005.04.037
[5]    Smallshaw, J. E., Richardson, J. A., & Vitetta, E. S. (2007). RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol. Vaccine, 25(42), 7459–7469. https://doi.org/10.1016/j.vaccine. 2007.08.018
[6]    Smallshaw, J. E., & Vitetta, E. S. (2010). A lyophilized formulation of RiVax, a recombinant ricin subunit vaccine, retains immunogenicity. Vaccine, 28(12), 2428–2435. https://doi.org/10.1016/j.vaccine.2009.12.081
[7]    Marconescu, P. S., Smallshaw, J. E., Pop, L. M., Ruback, S. L., & Vitetta, E. S. (2010). Intradermal administration of RiVax protects mice from mucosal and systemic ricin intoxication. Vaccine, 28(32), 5315–5322. https://doi.org/10.1016/j.vaccine.2010.05.045
[8]    Legler, P. M., Brey, R. N., Smallshaw, J. E., Vitetta, E. S., & Millard, C. B. (2011). Structure of RiVax: a recombinant ricin vaccine. Acta crystallographica. Section D, Biological crystallography, 67(Pt 9), 826–830. https://doi.org/ 10.1107/S0907444911026771
[9]    Gregory, A. E., Titball, R., & Williamson, D. (2013). Vaccine delivery using nanoparticles. Frontiers in cellular and infection microbiology3, 13. https://doi.org/10.3389/fcimb.2013.00013
[10] Zhao, L., Seth, A., Wibowo, N., Zhao, C. X., Mitter, N., Yu, C., & Middelberg, A. P. (2014). Nanoparticle vaccines. Vaccine, 32(3), 327–337. https://doi.org/10.1016/j.vaccine.2013.11.069
[11]  Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release: official journal of the Controlled Release Society, 161(2), 505–522. https://doi.org/10.1016/j.jconrel.2012.01.043
[12]  Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377
[13]  Silva, A. L., Soema, P. C., Slütter, B., Ossendorp, F., & Jiskoot, W. (2016). PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Human vaccines & immunotherapeutics12(4), 1056–1069. https://doi.org/10.1080/21645515.2015.1117714
[14] Sadeghi D, Ebrahimi F, Zeinoddini M, Tarverdizadeh Y, Bakhshi M, Bagheripor M, & Aghaei, S.M. (2018). Preparation and Evaluation of Rivax Protein Loading in Chitosan Nanoparticles . Journal of Babol University of Medical Sciences, 20(6) :62-69. https://doi.org/10.18869/acadpub.jbums.20.6.62
[15] Kordbacheh, E., Nazarian, S., Sadeghi, D., & Hajizadeh, A. (2018a). An LTB-entrapped protein in PLGA nanoparticles preserves against enterotoxin of enterotoxigenic Escherichia coli. Iranian journal of basic medical sciences, 21(5), 517–524. https://doi.org/10.22038/IJBMS.2018.27017.6609
[16]  Kordbacheh, E., Nazarian, S., Hajizadeh, A., & Sadeghi, D. (2018b). Entrapment of LTB protein in alginate nanoparticles protects against Enterotoxigenic Escherichia coli. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 126(4), 320–328. https://doi.org/10.1111/apm.12815
[17]  Rajapaksa, T. E., Stover-Hamer, M., Fernandez, X., Eckelhoefer, H. A., & Lo, D. D. (2010). Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. Journal of controlled release: official journal of the Controlled Release Society, 142(2), 196–205. https://doi.org/10.1016/j.jconrel.2009. 10.033
[18]  Rasetti-Escargueil, C., & Avril, A. (2023). Medical Countermeasures against Ricin Intoxication. Toxins, 15(2), 100. https://doi.org/10.3390/toxins15020100
[19] Jain R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials21(23), 2475–2490. https://doi.org/10.1016/s0142-9612(00)00115-0
[20]  Cun, D., Jensen, D. K., Maltesen, M. J., Bunker, M., Whiteside, P., Scurr, D., Foged, C., & Nielsen, H. M. (2011). High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 77(1), 26–35. https://doi.org/10.1016/j. ejpb.2010.11.008
[21]  Freitas, S., Merkle, H. P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of controlled release: official journal of the Controlled Release Society, 102(2), 313–332. https://doi.org/10.1016/j.jconrel.2004.10.015
[22]  Menon, J. U., Kona, S., Wadajkar, A. S., Desai, F., Vadla, A., & Nguyen, K. T. (2012). Effects of surfactants on the properties of PLGA nanoparticles. Journal of biomedical materials research. Part A, 100(8), 1998–2005. https://doi.org/10.1002/jbm.a.34040
[23]  Sahoo, S. K., Panyam, J., Prabha, S., & Labhasetwar, V. (2002). Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of controlled release: official journal of the Controlled Release Society, 82(1), 105–114. https://doi.org/10.1016/s0168-3659(02)00127-x
[24] Eldridge, J. H., Meulbroek, J. A., Staas, J. K., Tice, T. R., & Gilley, R. M. (1989). Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Advances in experimental medicine and biology, 251, 191–202. https://doi.org/10.1007/978-1-4757-2046-4_18
[25]  Norris, D. A., Puri, N., & Sinko, P. J. (1998). The effect of physical barriers and properties on the oral absorption of particulates. Advanced drug delivery reviews, 34(2-3), 135–154. https://doi.org/10.1016/s0169-409x (98) 00037-4
[26] Halayqa, M., & Domańska, U. (2014). PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: effect of formulation and release. International journal of molecular sciences, 15(12), 23909–23923. https://doi.org/10.3390/ijms151223909
[27]  Nazarian, S., Gargari, S. L., Rasooli, I., Hasannia, S., & Pirooznia, N. (2014). A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiological research, 169(2-3), 205–212. https://doi.org/10.1016/j.micres.2013.06.005
[28]  Tamilselvan, N., Raghavan, C. V., Balakumar, K., & Karthik, S. (2014). Preparation of PLGA nanoparticles for encapsulating hydrophilic drug: modifications of standard methods and its in vitro biological evaluation. Asian Journal of Research in Biological and Pharmaceutical Sciences, (3), 121-132.
[29] Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics, 5(4), 505–515. https://doi.org/10.1021/mp800051m
[30] Panyam, J., Dali, M. M., Sahoo, S. K., Ma, W., Chakravarthi, S. S., Amidon, G. L., Levy, R. J., & Labhasetwar, V. (2003). Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. Journal of controlled release: official journal of the Controlled Release Society, 92(1-2), 173–187. https://doi.org/10.1016/s0168-3659(03)00328-6
[31] Thomas, C., Rawat, A., Hope-Weeks, L., & Ahsan, F. (2011). Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Molecular pharmaceutics8(2), 405–415. https://doi.org/10.1021/mp100255c
[32] Bershteyn, A., Hanson, M. C., Crespo, M. P., Moon, J. J., Li, A. V., Suh, H., & Irvine, D. J. (2012). Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. Journal of controlled release: official journal of the Controlled Release Society157(3), 354–365. https://doi.org/10.1016/j.jconrel. 2011.07.029
[33] Park, J., Mattessich, T., Jay, S. M., Agawu, A., Saltzman, W. M., & Fahmy, T. M. (2011). Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. Journal of controlled release: official journal of the Controlled Release Society, 156(1), 109–115. https://doi.org/10.1016/j.jconrel. 2011. 06. 025