[1] Yu, H., Li, S., Xu, N., & Liu, W. (2022). Ricin toxin and its neutralizing antibodies: A review. Toxicon: official journal of the International Society on Toxinology, 214, 47–53. https://doi.org/10.1016/j.toxicon.2022.05.005
[2] Liu, G., Wu, Z., Peng, Y., Shang, X., & Gao, L. (2022). Integrated Transcriptome and Proteome Analysis Provides Insight into the Ribosome Inactivating Proteins in Plukenetia volubilis Seeds. International journal of molecular sciences, 23(17), 9562. https://doi.org/10.3390/ijms23179562
[3] Iglesias, R., Russo, R., Landi, N., Valletta, M., Chambery, A., Di Maro, A., Bolognesi, A., Ferreras, J. M., & Citores, L. (2022). Structure and Biological Properties of Ribosome-Inactivating Proteins and Lectins from Elder (Sambucus nigra L.) Leaves. Toxins, 14(9), 611. https://doi.org/10.3390/toxins14090611
[4] Smallshaw, J. E., Richardson, J. A., Pincus, S., Schindler, J., & Vitetta, E. S. (2005). Preclinical toxicity and efficacy testing of RiVax, a recombinant protein vaccine against ricin. Vaccine, 23(39), 4775–4784. https://doi.org/ 10.1016/j.vaccine.2005.04.037
[5] Smallshaw, J. E., Richardson, J. A., & Vitetta, E. S. (2007). RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol. Vaccine, 25(42), 7459–7469. https://doi.org/10.1016/j.vaccine. 2007.08.018
[6] Smallshaw, J. E., & Vitetta, E. S. (2010). A lyophilized formulation of RiVax, a recombinant ricin subunit vaccine, retains immunogenicity. Vaccine, 28(12), 2428–2435. https://doi.org/10.1016/j.vaccine.2009.12.081
[7] Marconescu, P. S., Smallshaw, J. E., Pop, L. M., Ruback, S. L., & Vitetta, E. S. (2010). Intradermal administration of RiVax protects mice from mucosal and systemic ricin intoxication. Vaccine, 28(32), 5315–5322. https://doi.org/10.1016/j.vaccine.2010.05.045
[8] Legler, P. M., Brey, R. N., Smallshaw, J. E., Vitetta, E. S., & Millard, C. B. (2011). Structure of RiVax: a recombinant ricin vaccine. Acta crystallographica. Section D, Biological crystallography, 67(Pt 9), 826–830. https://doi.org/ 10.1107/S0907444911026771
[9] Gregory, A. E., Titball, R., & Williamson, D. (2013). Vaccine delivery using nanoparticles. Frontiers in cellular and infection microbiology, 3, 13. https://doi.org/10.3389/fcimb.2013.00013
[10] Zhao, L., Seth, A., Wibowo, N., Zhao, C. X., Mitter, N., Yu, C., & Middelberg, A. P. (2014). Nanoparticle vaccines. Vaccine, 32(3), 327–337. https://doi.org/10.1016/j.vaccine.2013.11.069
[11] Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release: official journal of the Controlled Release Society, 161(2), 505–522. https://doi.org/10.1016/j.jconrel.2012.01.043
[12] Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377
[13] Silva, A. L., Soema, P. C., Slütter, B., Ossendorp, F., & Jiskoot, W. (2016). PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Human vaccines & immunotherapeutics, 12(4), 1056–1069. https://doi.org/10.1080/21645515.2015.1117714
[14] Sadeghi D, Ebrahimi F, Zeinoddini M, Tarverdizadeh Y, Bakhshi M, Bagheripor M, & Aghaei, S.M. (2018). Preparation and Evaluation of Rivax Protein Loading in Chitosan Nanoparticles . Journal of Babol University of Medical Sciences, 20(6) :62-69. https://doi.org/10.18869/acadpub.jbums.20.6.62
[15] Kordbacheh, E., Nazarian, S., Sadeghi, D., & Hajizadeh, A. (2018a). An LTB-entrapped protein in PLGA nanoparticles preserves against enterotoxin of enterotoxigenic Escherichia coli. Iranian journal of basic medical sciences, 21(5), 517–524. https://doi.org/10.22038/IJBMS.2018.27017.6609
[16] Kordbacheh, E., Nazarian, S., Hajizadeh, A., & Sadeghi, D. (2018b). Entrapment of LTB protein in alginate nanoparticles protects against Enterotoxigenic Escherichia coli. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 126(4), 320–328. https://doi.org/10.1111/apm.12815
[17] Rajapaksa, T. E., Stover-Hamer, M., Fernandez, X., Eckelhoefer, H. A., & Lo, D. D. (2010). Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. Journal of controlled release: official journal of the Controlled Release Society, 142(2), 196–205. https://doi.org/10.1016/j.jconrel.2009. 10.033
[18] Rasetti-Escargueil, C., & Avril, A. (2023). Medical Countermeasures against Ricin Intoxication. Toxins, 15(2), 100. https://doi.org/10.3390/toxins15020100
[19] Jain R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21(23), 2475–2490. https://doi.org/10.1016/s0142-9612(00)00115-0
[20] Cun, D., Jensen, D. K., Maltesen, M. J., Bunker, M., Whiteside, P., Scurr, D., Foged, C., & Nielsen, H. M. (2011). High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 77(1), 26–35. https://doi.org/10.1016/j. ejpb.2010.11.008
[21] Freitas, S., Merkle, H. P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of controlled release: official journal of the Controlled Release Society, 102(2), 313–332. https://doi.org/10.1016/j.jconrel.2004.10.015
[22] Menon, J. U., Kona, S., Wadajkar, A. S., Desai, F., Vadla, A., & Nguyen, K. T. (2012). Effects of surfactants on the properties of PLGA nanoparticles. Journal of biomedical materials research. Part A, 100(8), 1998–2005. https://doi.org/10.1002/jbm.a.34040
[23] Sahoo, S. K., Panyam, J., Prabha, S., & Labhasetwar, V. (2002). Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of controlled release: official journal of the Controlled Release Society, 82(1), 105–114. https://doi.org/10.1016/s0168-3659(02)00127-x
[24] Eldridge, J. H., Meulbroek, J. A., Staas, J. K., Tice, T. R., & Gilley, R. M. (1989). Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Advances in experimental medicine and biology, 251, 191–202. https://doi.org/10.1007/978-1-4757-2046-4_18
[25] Norris, D. A., Puri, N., & Sinko, P. J. (1998). The effect of physical barriers and properties on the oral absorption of particulates. Advanced drug delivery reviews, 34(2-3), 135–154. https://doi.org/10.1016/s0169-409x (98) 00037-4
[26] Halayqa, M., & Domańska, U. (2014). PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: effect of formulation and release. International journal of molecular sciences, 15(12), 23909–23923. https://doi.org/10.3390/ijms151223909
[27] Nazarian, S., Gargari, S. L., Rasooli, I., Hasannia, S., & Pirooznia, N. (2014). A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiological research, 169(2-3), 205–212. https://doi.org/10.1016/j.micres.2013.06.005
[28] Tamilselvan, N., Raghavan, C. V., Balakumar, K., & Karthik, S. (2014). Preparation of PLGA nanoparticles for encapsulating hydrophilic drug: modifications of standard methods and its in vitro biological evaluation. Asian Journal of Research in Biological and Pharmaceutical Sciences, (3), 121-132.
[29] Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics, 5(4), 505–515. https://doi.org/10.1021/mp800051m
[30] Panyam, J., Dali, M. M., Sahoo, S. K., Ma, W., Chakravarthi, S. S., Amidon, G. L., Levy, R. J., & Labhasetwar, V. (2003). Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. Journal of controlled release: official journal of the Controlled Release Society, 92(1-2), 173–187. https://doi.org/10.1016/s0168-3659(03)00328-6
[31] Thomas, C., Rawat, A., Hope-Weeks, L., & Ahsan, F. (2011). Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Molecular pharmaceutics, 8(2), 405–415. https://doi.org/10.1021/mp100255c
[32] Bershteyn, A., Hanson, M. C., Crespo, M. P., Moon, J. J., Li, A. V., Suh, H., & Irvine, D. J. (2012). Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. Journal of controlled release: official journal of the Controlled Release Society, 157(3), 354–365. https://doi.org/10.1016/j.jconrel. 2011.07.029
[33] Park, J., Mattessich, T., Jay, S. M., Agawu, A., Saltzman, W. M., & Fahmy, T. M. (2011). Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. Journal of controlled release: official journal of the Controlled Release Society, 156(1), 109–115. https://doi.org/10.1016/j.jconrel. 2011. 06. 025