Document Type : Research Paper

Authors

1 PhD Student, Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht,

2 Professor, Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht, Iran

3 Associate Professor. Royan Research Institute, Jihad University Institute of Stem Cell Biology and Technology, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran

4 Assistant Professo.Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht, Iran

10.22051/jab.2023.42190.1523

Abstract

Introduction: The main challenge of primordial germ cells (PGC) is their lack of proliferation and self-renewal in the culture medium. One method for inducing the pluripotency of PGC cells is to manipulate intracellular signaling pathways such as TGF-β, and the use of growth factors and small molecules is one of the ways to achieve this goal. Materials and methods: Chicken gonadal PGC cells were cultured and incubated with a concentration of 50,000 cells per well in a 24-well plate coated with Matrigel. The experimental groups included four groups: control (basic medium for PGCs culture), treatment with small molecule IDE1 (100 nM; Stemgent, USA, 04-0026), treatment with growth factor A Activin (25 ng/ml; R&D Systems, 338-AC) and treatment with SB431542 (10 µM; Cayman Chemical, 13031) with three replicates from each group. In order to check the amount of cell proliferation, PGC cells were counted in time intervals of 7, 14, 21 days after the treatment with a hemocytometer. The activity of TGF/ẞ signaling pathway was evaluated by examining the expression of SMAD2, SMAD3 and LFTTY1 genes by qRT-PCR method. Results: The effect of Activin A and IDE1 led to an increase in the proliferation of PGCs cells to more than 4 times compared to the control group, and in contrast to the SB431542 group, it led to a decrease in cell proliferation.

Keywords

Main Subjects

[1]     Whyte, J., Glover, J. D., Woodcock, M., Brzeszczynska, J., Taylor, L., Sherman, A., … & McGrew, M. J. (2015). FGF, Insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem cell reports, 5(6), 1171–1182. DOI:10.1016/j.stemcr.2015.10.008
[2]     Nakamura, Y., Tasai, M., Takeda, K., Nirasawa, K., & Tagami, T. (2013). Production of functional gametes from cryopreserved primordial germ cells of the Japanese quail. Journal of reproduction and development, 59(6), 580–587. DOI:10.1262/jrd.2013-065
[3]     Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of morphology, 88(1), 49–92. DOI:10.1002/jmor.1050880104
[4]     Naito, M., Nirasawa, K., & Oishi, T. (1990). Development in culture of the chick embryo from fertilized ovum to hatching. Journal of experimental zoology, 254(3), 322–326. DOI:10.1002/jez.1402540311
[5]     Tajima, A., Hayashi, H., Kamizumi, A., Ogura, J., Kuwana, T., & Chikamune, T. (1999). Study on the concentration of circulating primordial germ cells (cPGCs) in early chick embryos. Journal of experimental zoology, 284(7), 759–764. DOI:10.1002/(SICI)1097-010X(19991201)284:7<759::AID-JEZ5>3.0.CO;2-6
[6]     Bednarczyk, M. (2014). Avian primordial germ cells and their application. Slovak journal of animal science, 2014(4), 185–187.
[7]     Lillico, S. G., Sherman, A., McGrew, M. J., Robertson, C. D., Smith, J., Haslam, C., … & Sang, H. M. (2007). Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proceedings of the national academy of sciences of the united states of America, 104(6), 1771–1776. DOI:10.1073/pnas.0610401104
[8]     Choi, J. W., Kim, S., Kim, T. M., Kim, Y. M., Seo, H. W., Park, T. S., … & Han, J. Y. (2010). Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells. PLoS one, 5(9), e12968. DOI:10.1371/journal.pone.0012968
[9]     Macdonald, J., Glover, J. D., Taylor, L., Sang, H. M., & McGrew, M. J. (2010). Characterisation and germline transmission of cultured avian primordial germ cells. PLoS one, 5(11), e15518. DOI:10.1371/journal.pone.0015518
[10]   Tang, X., Zhang, C., Jin, Y., Ge, C., & Wu, Y. (2007). Pro-proliferating effect of homologous somatic cells on chicken primordial germ cells. Cell biology international, 31(9), 1016–1021. DOI:10.1016/j.cellbi.2007.03.014
[11]   Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700. DOI:10.1016/S0092-8674(03)00432-X
[12]   Lee, H. C., Lim, S., & Han, J. Y. (2016). Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro. Scientific reports, 6(1), 34510. DOI:10.1038/srep34510
[13]   Yakhkeshi, S., Rahimi, S., Sharafi, M., Hassani, S. N., Taleahmad, S., Shahverdi, A., & Baharvand, H. (2018). In vitro improvement of quail primordial germ cell expansion through activation of TGF-beta signaling pathway. Journal of cellular biochemistry, 119(6), 4309–4319. DOI:10.1002/jcb.26618
[14]   Hassani, S. N., Totonchi, M., Farrokhi, A., Taei, A., Larijani, M. R., Gourabi, H., & Baharvand, H. (2012). Simultaneous SUPPRESSION of TGF-β and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains. Stem cell reviews and reports, 8(2), 472–481. DOI:10.1007/s12015-011-9306-y
[15]   Hassani, S. N., Totonchi, M., Gourabi, H., Schöler, H. R., & Baharvand, H. (2014). Signaling roadmap modulating naive and primed pluripotency. Stem cells and development, 23(3), 193–208. DOI:10.1089/scd.2013.0368
[16]   Van De Lavoir, M. C., Collarini, E. J., Leighton, P. A., Fesler, J., Lu, D. R., Harriman, W. D., … & Etches, R. J. (2012). Interspecific germline transmission of cultured primordial germ cells. PLoS one, 7(5), e35664. DOI:10.1371/journal.pone.0035664
[17]   Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), E45. DOI:10.1093/nar/29.9.e45
[18]   Van De Lavoir, M. C., Diamond, J. H., Leighton, P. A., Mather-Love, C., Heyer, B. S., Bradshaw, R., … & Etches, R. J. (2006). Germline transmission of genetically modified primordial germ cells. Nature, 441(7094), 766–769. DOI:10.1038/nature04831
[19]   Yao, T., & Asayama, Y. (2017). Animal-cell culture media: History, characteristics, and current issues. Reproductive medicine and biology, 16(2), 99–117.
[20]   Pauklin, S., & Vallier, L. (2015). Activin/nodal signalling in stem cells. Development  (Cambridge), 142(4), 607–619. DOI:10.1242/dev.091769
[21]   Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115(3), 281–292. DOI:10.1016/S0092-8674(03)00847-X
[22]   Pain, B., Clark, M. E., Shen, M., Nakazawa, H., Sakurai, M., Samarut, J., & Etches, R. J. (1996). Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development, 122(8), 2339–2348. DOI:10.1242/dev.122.8.2339
[23]   Etches, R. J. (2006). The hard cell(s) of avian transgenesis. Transgenic research, 15(5), 521–526. DOI:10.1007/s11248-006-9018-2
[24]   Lin, S., & Talbot, P. (2011). Methods for culturing mouse and human embryonic stem cells. Methods in molecular biology, 690, 31–56. DOI:10.1007/978-1-60761-962-8_2
[25]   Park, T. S., & Han, J. Y. (2012). piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proceedings of the national academy of sciences of the united states of america, 109(24), 9337–9341. DOI:10.1073/pnas.1203823109
[26]   Xie, L., Lu, Z., Chen, D., Yang, M., Liao, Y., Mao, W., … & Lu, Y. (2019). Derivation of chicken primordial germ cells using an indirect Co-culture system. Theriogenology, 123, 83–89. DOI:10.1016/j.theriogenology.2018.09.017
[27]   Tonus, C., Cloquette, K., Ectors, F., Piret, J., Gillet, L., Antoine, N., … & Grobet, L. (2016). Long term-cultured and cryopreserved primordial germ cells from various chicken breeds retain high proliferative potential and gonadal colonisation competency. Reproduction, fertility and development, 28(5), 628–639.
[28]   Intarapat, S., & Stern, C. D. (2013). Chick stem cells: Current progress and future prospects. Stem cell research, 11(3), 1378–1392. DOI:10.1016/j.scr.2013.09.005
[29]   Zou, Q., Wu, M., Zhong, L., Fan, Z., Zhang, B., Chen, Q., & Ma, F. (2016). Development of a xeno-free feeder-layer system from human umbilical cord mesenchymal stem cells for prolonged expansion of human induced pluripotent stem cells in culture. PLoS one, 11(2), e0149023. DOI:10.1371/journal.pone.0149023
[30]   Germeraad, W. T. V., Asami, N., Fujimoto, S., Mazda, O., & Katsura, Y. (1994). Efficient retrovirus-mediated gene transduction into murine hematopoietic stem cells and long-lasting expression using a transwell coculture system. Blood, 84(3), 780–788. DOI:10.1182/blood.v84.3.780.bloodjournal843780
[31]   Sip, C. G., Bhattacharjee, N., & Folch, A. (2014). Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates. Lab on a chip, 14(2), 302–314.
[32]   England, M. A., & Matsumura, G. (1993). Primordial germ cells in the primitive streak stages chick embryo as studied by scanning electron microscopy. Journal of anatomy, 183, 67–73. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1259854&tool=pmcentrez&rendertype=abstract
[33]   Kuwana, T., Miyayama, Y., Kajiwara, Y., & Fujimoto, T. (1987). Behavior of chick primordial germ cells moving toward gonadal primordium in vitro: Scanning electron microscopic study. The anatomical record, 219(2), 164–170. DOI:10.1002/ar.1092190209
[34]   Han, J. Y., & Park, Y. H. (2018). Primordial germ cell-mediated transgenesis and genome editing in birds. Journal of animal science and biotechnology, 9(1), 1–11. DOI:10.1186/s40104-018-0234-4
[35]   Vallier, L., Alexander, M., & Pedersen, R. A. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of cell science, 118(19), 4495–4509. DOI:10.1242/jcs.02553
[36]   Mullen, A. C., Orlando, D. A., Newman, J. J., Lovén, J., Kumar, R. M., Bilodeau, S., … & Young, R. A. (2011). Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell, 147(3), 565–576. DOI:10.1016/j.cell.2011.08.050
[37]   Estarás, C., Akizu, N., García, A., Beltrán, S., de la Cruz, X., & Martínez-Balbás, M. A. (2012). Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development (Cambridge, England), 139(15), 2681–2691. DOI:10.1242/dev.078345
[38]   Bertero, A., Madrigal, P., Galli, A., Hubner, N. C., Moreno, I., & Burks, D. (2015). Activin/nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark. Genes & development, 29(7), 702–717.
[39]   Ogawa, K., Saito, A., Matsui, H., Suzuki, H., Ohtsuka, S., Shimosato, D., … & Miyazono, K. (2007). Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. Journal of cell science, 120(1), 55–65.
[40]   Borowiak, M., Maehr, R., Chen, S., Chen, A. E., Tang, W., Fox, J. L., … & Melton, D. A. (2009). Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell stem cell, 4(4), 348–358. DOI:10.1016/j.stem.2009.01.014