Document Type : Research Paper

Authors

1 Assistant Professor, Department of Genetics and Biotechnology, International Sturgeon Research Institute, Iran Fisheries Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

2 Instructor, Department of Genetics and Biotechnology, International Sturgeon Research Institute, Iran Fisheries Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

3 Assistant Professor, Department of Physiology and Biochemistry, International Sturgeon Research Institute, Iran Fisheries Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

10.22051/jab.2023.42758.1545

Abstract

Introduction: Identifying the species of sturgeons, the non-mixing of multi-species caviar in products made from sturgeons' caviar is one of the most important challenges in the legal and international trade of this product. One of the ways to identify the original caviar and correctly label caviar products is the use of barcodes and especially molecular barcode tracking.
Methods: In this research, fin tissue samples of Russian and Persian sturgeon, Ship, Sterlet, stellate and Siberian sturgeon, as well as their caviar samples, were used to investigate species identification markers of Caspian Sea sturgeons. DNA extraction was performed from three caviar eggs of each species and pure sturgeons fin tissue, and two types of primers were selected based on mitochondrial genes.
Results and discussion: sturgeon's marker amplified a 138 new nucleotide fragment using PCR method in all species based on COI gene, but the species-specific marker amplified different sized fragments based on D-loop gene. These fragments were reproduced in both caviar and fin tissue of sturgeons. The overall results showed that the amplified fragment of the sturgeon's marker and the species-specific marker in pure sturgeons can indicate the pure fish species.

Keywords

Main Subjects

[1]     Moradi, Y. (2007). Caviar control and processing. Agricultural Education and Extension Institute. (In Persian). https://www.gisoom.com/book/1571307/
[2]     Tang, Q., Liu, H., Mayden, R., & Xiong, B. (2006). Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Molecular phylogenetics and evolution, 39(2), 347–357. DOI:10.1016/j.ympev.2005.08.007
[3]     Birstein, V. J., Hanner, R., & Desalle, R. (1997). Phylogeny of the acipenseriformes: cytogenetic and molecular approaches. In Developments in environmental biology of fishes (pp. 127–155). Kluwer Academic Publishers.
[4]     Ludwig, A., Debus, L., & Jenneckens, I. (2002). A molecular approach to control the international trade in black caviar. International review of hydrobiology, 87(5–6), 661–674. DOI:10.1002/1522-2632(200211)87:5/6<661::AID-IROH661>3.0.CO;2-S
[5]     Miuge, N. S., Barmintseva, A. E., Rastorguev, S. M., Miuge, V. N., & Barmintsev, V. A. (2008). Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification. Genetika, 44(7), 913–919.
[6]     Pappalardo, A. M., Petraccioli, A., Capriglione, T., & Ferrito, V. (2019). From fish eggs to fish name: Caviar species discrimination by Coibar-RFLP, an efficient molecular approach to detect fraud in the caviar trade. Molecules, 24(13), 2468. DOI:10.3390/molecules24132468
[7]     Jamshidi, S., & Hasanzadeh Saber, M. (2021). Investigating verification of sturgeon caviar in cosmetic products using barcoding method of mitochondrial genes. Journal of aquatic physiology and biotechnology, 9(2), 1-20. (In Persian). https://japb.guilan.ac.ir/article_5020_en.html
[8]     Waraniak, J. M., Blumstein, D. M., & Scribner, K. T. (2018). Barcoding PCR primers detect larval lake sturgeon (Acipenser fulvescens) in diets of piscine predators. Conservation genetics resources, 10(2), 259–268. DOI:10.1007/s12686-017-0790-5
[9]     Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. Plos biology, 2(10), e312. DOI:10.1371/journal.pbio.0020312
[10]   Hebert, P. D. N., Cywinska, A., Ball, S. L., & Dewaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the royal society b: biological sciences, 270(1512), 313–321. DOI:10.1098/rspb.2002.2218
[11]   Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical transactions of the royal society B: biological sciences, 360(1462), 1847–1857. DOI:10.1098/rstb.2005.1716
[12]   Costa, F. O., DeWaard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M., & Hebert, P. D. N. (2007). Biological identifications through DNA barcodes: The case of the Crustacea. Canadian journal of fisheries and aquatic sciences, 64(2), 272–295. DOI:10.1139/F07-008
[13]   Zhang, X., Tinacci, L., Xie, S., Wang, J., Ying, X., Wen, J., & Armani, A. (2022). Caviar products sold on Chinese Business to customer (B2C) online platforms: Labelling assessment supported by molecular identification. Food control, 131, 108370. DOI:10.1016/j.foodcont.2021.108370
[14]   De Lima, M. C. C., Lima, S. C., Savada, C. S., Suzuki, K. M., Orsi, M. L., & de Almeida, F. S. (2020). Use of DNA barcode in the identification of fish eggs in tributaries of the paranapanema river basin. Genetics and molecular biology, 43(3), 1–9. DOI:10.1590/1678-4685-gmb-2019-0352
[15]   Han, C., Dong, S., Li, L., Gao, Q., & Zhou, Y. (2021). DNA barcoding and mini-DNA barcoding reveal mislabeling of salmonids in different distribution channels in the Qingdao area. Journal of ocean university of China, 20(6), 1537–1544. DOI:10.1007/s11802-021-4777-1
[16]   DeSalle, R., & Birstein, V. J. (1996). PCR identification of black caviar. Nature, 381(6579), 197–198. DOI:10.1038/381197a0
[17]   Rezaei Gilkolaei, S. (2002). DNA PCR amplification for species diagnosis of caviar from Caspian Sea sturgeon. Journal of agricultural science and technology, 4, 51–61.
[18]   Fopp-Bayat, D. (2007). Genetic identification of black caviar based on microsatellite DNA analysis. Environmental biotechnology, 3(2), 57–60.
[19]   Ghadirnejad, H. (2009). Barcoding of five sturgeon species in Iran. Journal of molecular genetics l, 2(4), 29–34.
[20]   Kolangi Miandare, H., Farahmand, H., Aghilinejhad, S. M., & Akbarzadeh, A. (2012). Introdution of Cyt b gene as useful gene for identification of Caspian Sturgeon caviar. Utilization and cultivation of aquatics, 1, 51-62. (In Persian). https://japu.gau.ac.ir/article_1170.html?lang=en
[21]   Popa, G. O., Dudu, A., Bǎnǎduc, D., Curtean-Bǎnǎduc, A., Barbǎlatǎ, T., Burcea, A., … & Costache, M. (2017). Use of DNA barcoding in the assignment of commercially valuable fish species from Romania. Aquatic living resources, 30, 20. DOI:10.1051/alr/2017018
[22]   Dudu, A., Samu, M., Maereanu, M., & Georgescu, S. E. (2022). A multistep DNA-based methodology for accurate authentication of sturgeon species. Foods, 11(7), 1007. DOI:10.3390/foods11071007