Document Type : Research Paper

Authors

1 MSc. Student،Department of Genetics, Faculty of Biological sciences, Varamin-Pishva branch, Islamic Azad University, Pishva, Iran

2 Assistant Professor،Department of Biochemistry and Biophysics, Faculty of Biological sciences, Varamin-Pishva branch, Islamic Azad University, Pishva, Iran

3 Assistant Professor،Department of Biology, Faculty of Biological sciences, Varamin-Pishva branch, Islamic Azad University, Pishva, Iran

10.22051/jab.2023.42160.1522

Abstract

Today, antibiotic resistance of staphylococcal infection has become a major problem both in hospitals and in the community. The aim of this study is to investigate the expression level of norB gene in quinolone-resistant Staphylococcus aureus isolated from clinical samples in Qom city. Staphylococcus aureus isolates were obtained from different clinical samples by standard biochemical and culture methods. In the following, the presence of femA genes as a molecular diagnosis of Staphylococcus aureus, norB as a target gene and rpoD as a reference gene were investigated using Multiplex PCR technique. The pattern of antibiotic resistance was determined using the standard disk diffusion method and the minimum inhibitory concentration of the ciprofloxacin antibiotic of the isolated strains was determined by the microdilution method. The expression level of norB gene was determined using Real-Time PCR method. A total of 82 isolates were obtained from 240 clinical samples using standard biochimical and culture methods. Multiplex PCR technique had shown that genes femA, norB, rpoD are simultaneously present in 40 isolates (48/78%). Also, after analyzing the antibiotic pattern, 26 strains were resistant to ciprofloxacin. The results of the Real-Time PCR technique indicated an increase in norB gene expression among ciprofloxacin resistant strains. According to the results obtained, the norB efflux pump plays an essential role in creating resistance to ciprofloxacin, and investigating the presence of this gene can be important in suggesting a treatment model.

Keywords

Main Subjects

[1]     Klevens, R. M., Morrison, M. A., Nadle, J., Petit, S., Gershman, K., Ray, S., … & Fridkin, S. K. (2007). Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Journal of the american medical association, 298(15), 1763–1771. DOI:10.1001/jama.298.15.1763
[2]     Sethi, S. (2002). Bacterial pneumonia: Managing a deadly complication of influenza in older adults with comorbid disease. Geriatrics, 57(3), 56–61.
[3]     Moreillon, P., Que, Y. A., & Bayer, A. S. (2002). Pathogenesis of streptococcal and staphylococcal endocarditis. Infectious disease clinics of north america, 16(2), 297–318. DOI:10.1016/S0891-5520(01)00009-5
[4]     Normanno, G., La Salandra, G., Dambrosio, A., Quaglia, N. C., Corrente, M., Parisi, A., … & Celano, G. V. (2007). Occurrence, characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. International journal of food microbiology, 115(3), 290–296. DOI:10.1016/j.ijfoodmicro.2006.10.049
[5]     Witte, W., Strommenger, B., Cuny, C., Heuck, D., & Nuebel, U. (2007). Methicillin-resistant Staphylococcus aureus containing the Panton-Valentine leucocidin gene in Germany in 2005 and 2006. Journal of antimicrobial chemotherapy, 60(6), 1258–1263. DOI:10.1093/jac/dkm384
[6]     Nikaido, H. (1998). Multiple antibiotic resistance and efflux. Current opinion in microbiology, 1(5), 516–523. DOI:10.1016/S1369-5274(98)80083-0
[7]     Acar, J. F., & Goldstein, F. W. (1997). Trends in bacterial resistance to fluoroquinolones. Clinical infectious diseases, 24(1), S67--S73. DOI:10.1093/clinids/24.supplement_1.s67
[8]     Marangon, F. B., Miller, D., Muallem, M. S., Romano, A. C., & Alfonso, E. C. (2004). Ciprofloxacin and levofloxacin resistance among methicillin-sensitive staphylococcus aureus isolates from keratitis and conjunctivitis. American journal of ophthalmology, 137(3), 453–458. DOI:10.1016/j.ajo.2003.10.026
[9]     Coskun-Ari, F. F., & Bosgelmez-Tinaz, G. (2008). Grla and gyrA mutations and antimicrobial susceptibility in clinical isolates of ciprofloxacin-methicillin-resistant staphylococcus aureus. European journal of medical research, 13(8), 366–370.
[10]   Ito, H., Yoshida, H., Bogaki-Shonai, M., Niga, T., Hattori, H., & Nakamura, S. (1994). Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Antimicrobial agents and chemotherapy, 38(9), 2014–2023. DOI:10.1128/AAC.38.9.2014
[11]   Ouellette, M., Légaré, D., & Papadopoulou, B. (1994). Microbial multidrug-resistance ABC transporters. Trends in microbiology, 2(10), 407–411.
[12]   Del Giudice, P., Bes, M., Hubiche, T., Roudiàre, L., Blanc, V., Lina, G., … & Etienne, J. (2011). Clinical manifestations and outcome of skin infections caused by the community-acquired methicillin-resistant Staphylococcus aureus clone ST80-IV. Journal of the european academy of dermatology and venereology, 25(2), 164–169. DOI:10.1111/j.1468-3083.2010.03731.x
[13]   Davoodi, N. R., Siadat, S. D., Vaziri, F., Yousefi, J. V., Harzandi, N., Rafi, A., … & Bahrmand, A. R. (2015). Identification of staphylococcus aureus and coagulase-negative Staphylococcus (CoNs) as well as detection of methicillin resistance and Panton-Valentine Leucocidin by multiplex PCR. Journal of pure and applied microbiology, 9(1), 467–471.
[14]   Chikkala, R., George, N. O., Ratnakar, K. S., Iyer, R. N., & Sritharan, V. (2012). Heterogeneity in femA in the Indian isolates of Staphylococcus aureus limits its usefulness as a species specific marker. Advances in infectious diseases, 2(03), 82–88.
[15]   Al-Talib, H., Yean, C. Y., Al-Khateeb, A., Hasan, H., & Ravichandran, M. (2014). Rapid detection of methicillin-resistant Staphylococcus aureus by a newly developed dry reagent-based polymerase chain reaction assay. Journal of microbiology, immunology and infection, 47(6), 484–490. DOI:10.1016/j.jmii.2013.06.004
[16]   Al-Talib, H., Yean, C. Y., Al-Khateeb, A., Hassan, H., Singh, K. K. B., Al-Jashamy, K., & Ravichandran, M. (2009). A pentaplex PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus and panton-valentine leucocidin. BMC microbiology, 9, 1–8. DOI:10.1186/1471-2180-9-113
[17]   Theis, T., Skurray, R. A., & Brown, M. H. (2007). Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. Journal of microbiological methods, 70(2), 355–362. DOI:10.1016/j.mimet.2007.05.011
[18]   Bremser, W. G., & Barsky, N. P. (2004). Utilizing the balanced scorecard for R&D performance measurement. R and d management, 34(3), 229–238. DOI:10.1111/j.1467-9310.2004.00335.x
[19]   Dinges, M. M., Orwin, P. M., & Schlievert, P. M. (2000). Exotoxins of Staphylococcus aureus. Clinical microbiology reviews, 13(1), 16–34. DOI:10.1128/CMR.13.1.16-34.2000
[20]   Holden, M. T. G., Feil, E. J., Lindsay, J. A., Peacock, S. J., Day, N. P. J., Enright, M. C., … & Parkhill, J. (2004). Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the evolution of virulence and drug resistance. Proceedings of the national academy of sciences of the United States of America, 101(26), 9786–9791. DOI:10.1073/pnas.0402521101
[21]   Vannuffel, P., Laterre, P. F., Bouyer, M., Gigi, J., Vandercam, B., Reynaert, M., & Gala, J. L. (1998). Rapid and specific molecular identification of methicillin-resistant Staphylococcus aureus in endotracheal aspirates from mechanically ventilated patients. Journal of clinical microbiology, 36(8), 2366–2368. DOI:10.1128/jcm.36.8.2366-2368.1998
[22]   Mehrotra, M., Wang, G., & Johnson, W. M. (2000). Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. Journal of clinical microbiology, 38(3), 1032–1035. DOI:10.1128/jcm.38.3.1032-1035.2000
[23]   Abimanyu, N., Krishnan, A., Murugesan, S., Gurumurthy, S., Krishnan, P., & others. (2013). Use of triplex PCR for rapid detection of PVL and differentiation of MRSA from methicillin resistant coagulase negative staphylococci. Journal of clinical and diagnostic research (JCDR), 7(2), 215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592277/
[24]   Johnson, S., Krüger, D., & Labischinski, H. (1995). FemA of Staphylococcus aureus: Isolation and immunodetection. FEMS microbiology letters, 132(3), 221–228. DOI:10.1016/0378-1097(95)00314-U
[25]   Espinal, M. A., Laszlo, A., Simonsen, L., Boulahbal, F., Kim, S. J., Reniero, A., … & Raviglione, M. C. (2001). Global trends in resistance to antituberculosis drugs. New england journal of medicine, 344(17), 1294–1303. DOI:10.1056/nejm200104263441706
[26]   Ferber, D. (2002). Antibiotic resistance: Livestock feed ban preserves drugs’ power. Science, 295(5552), 27–28. DOI:10.1126/science.295.5552.27a
[27]   Rahimi, F., Bouzari, M., Katouli, M., & Pourshafie, M. R. (2013). Antibiotic resistance pattern of methicillin resistant and methicillin sensitive Staphylococcus aureus isolates in Tehran, Iran. Jundishapur journal of microbiology, 6(2), 144–149. DOI:10.5812/jjm.4896
[28]   Gade, N. D., & Qazi, M. S. (2013). Fluoroquinolone therapy in Staphylococcus aureus infections: where do we stand? Journal of laboratory physicians, 5(02), 109–112. DOI:10.4103/0974-2727.119862
[29]   Rezazadeh, M., Yousefi Mashouf, R., Sarmadyan, H., & Ghaznavi-Rad, E. (2013). Antibiotic profile of methicillin-resistant Staphylococcus aureus with multiple-drug resistances isolated from nosocomial infections in Vali-Asr Hospital of Arak. Journal of arak university of medical sciences, 16(2), 29–37.
[30]   Aligholi, M., Emaneini, M., Hashemi, F. B., Shasavan, S., Jebelameli, F., & Kazemi, B. (2006). Determination of antimicrobial resistance pattern of Staphylococcus aureus isolated from clinical specimens. Tehran university medical journal, 64(9), 26–32. (In Persian). http://diglib.tums.ac.ir/pub/index.asp
[31]   Shittu, A. O., Okon, K., Adesida, S., Oyedara, O., Witte, W., Strommenger, B., … Nübel, U. (2011). Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. BMC microbiology, 11, 1–8. DOI:10.1186/1471-2180-11-92
[32]   Soltan Dallal, M. M., Agha Amiri, S., Eshraghian, M., Sabour Yaraghi, A. A., Faramarzi, T., Mahdavi, V., Saberpour, F., Fazeli Fard, P., & Peymane Abedi,  T. (2008). Prevalence and antibiotic resistance pattern of staphylococcus aureus strains isolated from food stuff. Journal of advances in medical and biomedical research, 16(4), 63. (In Persian). https://www.magiran.com/paper/590777/
[33]   Pirmoradian, M., Pourbabaei, A., Sangi, M. G., & Kalhor, N. (2013). A clinical trial of contamination of surgical instruments with Staphylococcus aureus during long time orthopedic surgeries. Qom university of medical sciences journal, 7(3), Pe62–Pe70. (In Persian). http://journal.muq.ac.ir
[34]   Nimmo, G. R., Bell, J. M., Mitchell, D., Gosbell, I. B., Pearman, J. W., & Turnidge, J. D. (2003). Antimicrobial resistance in Staphylococcus aureus in Australian teaching hospitals, 1989-1999. Microbial drug resistance, 9(2), 155–160.
[35]   Picot, S., Rakotomalala, R. S., Farny, K., Simac, C., & Michault, A. (2010). Evolution de la résistance aux antibiotiques de 1997 à 2005 à la Réunion. Medecine et maladies infectieuses, 40(11), 617–624. DOI:10.1016/j.medmal.2010.04.001
[36]   Poole, K. (2000). Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrobial agents and chemotherapy, 44(9), 2233–2241. DOI:10.1128/AAC.44.9.2233-2241.2000
[37]   Hancock, R. E. W. (1997). The bacterial outer membrane as a drug barrier. Trends in microbiology, 5(1), 37–42. DOI:10.1016/S0966-842X(97)81773-8
[38]   Hooper, D. C. (2000). Mechanisms of action and resistance of older and newer fluoroquinolones. Clinical infectious diseases, 31(SUPPL. 2), S24--S28. DOI:10.1086/314056
[39]   Thomson, K. S., & Smith Moland, E. (2000). Version 2000: The new β-lactamases of Gram-negative bacteria at the dawn of the new millennium. Microbes and infection, 2(10), 1225–1235. DOI:10.1016/S1286-4579(00)01276-4
[40]   Ding, Y., Onodera, Y., Lee, J. C., & Hooper, D. C. (2008). NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. Journal of bacteriology, 190(21), 7123–7129. DOI:10.1128/JB.00655-08
[41]   Truong-Bolduc, Q. C., Dunman, P. M., Strahilevitz, J., Projan, S. J., & Hooper, D. C. (2005). MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. Journal of bacteriology, 187(7), 2395–2405. DOI:10.1128/JB.187.7.2395-2405.2005