Document Type : Research Paper

Authors

1 MSC.Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

2 PHD student.Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

3 Professor.Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

4 Assistant professor.Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

5 Professor.The Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

6 Assistant Professor.Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Abstract

Introduction: Biomimetic means imitating models, systems, and elements of nature to solve complex human problems. This field of science has led to the creation of new technologies inspired by biological solutions in macro and nano sizes. Thousands of people die every year due to diseases caused by antibiotic resistance. Therefore, the use of antimicrobial peptides has become particularly important. Methods: in this study, branched polyethyleneimine polymer has been used as a biomimetic polymer of antibacterial peptides. In order to increase the antibacterial properties, the amino acids valine and lysine were used to modify the surface of branched polyethyleneimine. 1 H-NMR and FTIR were used to prove the binding of amino acids to the polymer. Antibacterial activity of the modified polymer by two methods of MIC test and growth inhibition zone on gram-positive bacteria S. aureus and B. subtilis and gram-negative bacteria E. coli and P. aeruginosa were examined. Results and discussion: Under optimal conditions, the concentration of branched polyethyleneimine polymer was 8 μl, and the amino acid valine to lysine ratio was 1: 6. Polyethyleneimine polymer modified with the amino acids valine and lysine inhibited bacterial growth concentration-dependent (p <0.05). 5 mg/ml of this polymer inhibits the growth of bacteria by more than 70%. The diameter of the inhibition zone of this polymer in examined bacteria reached about 15-20 mm. The antibacterial activity of this polymer was comparable to that of the antibiotic cefepime. It seems that this polymer can be used as an antibacterial polymer.

Keywords

Main Subjects

Alkekhia, D., & Shukla, A. (2019). Influence of poly‐l‐lysine molecular weight on antibacterial efficacy in polymer multilayer films. Journal of Biomedical Materials Research Part A, 107(6), 1324-1339.
Barick, P., Saha, B. P., Mitra, R., & Joshi, S. V. (2015). Effect of concentration and molecular weight of polyethylenimine on zeta potential, isoelectric point of nanocrystalline silicon carbide in aqueous and ethanol medium. Ceramics International, 41(3), 4289-4293.
Barman, S., Konai, M. M., Samaddar, S., & Haldar, J. (2019). Amino acid conjugated polymers: antibacterial agents effective against drug-resistant Acinetobacter baumannii with no detectable resistance. ACS applied materials & interfaces, 11(37), 33559-33572.
Bechinger, B. (1997). Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. The Journal of membrane biology, 156(3), 197-211.
Beyth, N., Yudovin-Farber, I., Perez-Davidi, M., Domb, A. J., & Weiss, E. I. (2010). Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proceedings of the National Academy of Sciences, 107(51), 22038-22043.
Bhushan, B. (2009). Biomimetics: lessons from nature–an overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1893), 1445-1486.
Brogden, K. A., Ackermann, M., McCray Jr, P. B., & Tack, B. F. (2003). Antimicrobial peptides in animals and their role in host defences. International journal of antimicrobial agents, 22(5), 465-478.
Chi, Z., Lin, H., Li, W., Zhang, X., & Zhang, Q. (2018). In vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells. Environmental Science and Pollution Research, 25, (32) 32380,-32373
Engler, A. C., Tan, J. P., Ong, Z. Y., Coady, D. J., Ng, V. W., Yang, Y. Y., & Hedrick, J. L. (2013). Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules, 14(12), 4331-4339.
Findlay, B., Zhanel, G. G., & Schweizer, F. (2010). Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrobial agents and chemotherapy, 54(10), 404-9.4058.
Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J., & Kissel, T. (2003). In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 24(7), 1121-1131.
Forde, E., & Devocelle, M. (2015). Pro-moieties of antimicrobial peptide prodrugs. Molecules, 20(1), 1210-1227.
Freire, J. M., Domingues, M. M., Matos, J., Melo, M. N., Veiga, A. S., Santos, N. C., & Castanho, M. A. (2011). Using zeta-potential measurements to quantify peptide partition to lipid membranes. European biophysics journal, 40(4), 481-487.
Ghiyasi, S., Sari, M. G., Shabanian, M., Hajibeygi, M., Zarrintaj, P., Rallini, M., Torre, L., Puglia, D., Vahabi, H., & Jouyandeh, M. (2018). Hyperbranched poly (ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings. Progress in Organic Coatings, 120, 100-109.
Gibney, K. A., Sovadinova, I., Lopez, A. I., Urban, M., Ridgway, Z., Caputo, G. A., & Kuroda, K. (2012). Poly (ethylene imine) s as antimicrobial agents with selective activity. Macromolecular bioscience, 12(9), 1279-1289.
Henkelman, S., Rakhorst, G., Blanton, J., & van Oeveren, W. (2009). Standardization of incubation conditions for hemolysis testing of biomaterials. Materials Science and Engineering: C, 29(5), 1650-1654.
Janus, E., Ossowicz, P., Klebeko, J., Nowak, A., Duchnik, W., Kucharski, Ł., & Klimowicz, A. (2020). Enhancement of ibuprofen solubility and skin permeation by conjugation with L-valine alkyl esters. RSC Advances, 10(13), 7570-7584.
Jiang, Z., Vasil, A. I., Hale, J. D., Hancock, R. E., Vasil, M. L., & Hodges, R. S. (2008). Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α‐helical cationic antimicrobial peptides. Peptide Science, 90(3), 369-383.
Lahrouch, F., Sofronov, O., Creff, G., Rossberg, A., Hennig, C., Den Auwer, C., & Di Giorgio, C. (2017). Polyethyleneimine methylphosphonate: towards the design of a new class of macromolecular actinide chelating agents in the case of human exposition. Dalton Transactions, 46(40), 13869-13877.
Lam, S. J., O'Brien-Simpson, N. M., Pantarat, N., Sulistio, A., Wong, E. H., Chen, Y.-Y., Lenzo, J. C., Holden, J. A., Blencowe, A., & Reynolds, E. C. (2016). Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nature microbiology, 1(11), 1-11.
Melo, M. N., & Castanho, M. A. (2012). The mechanism of action of antimicrobial peptides: lipid vesicles vs. bacteria. Frontiers in immunology, 3, 236.
Neu, M., Fischer, D., & Kissel, T. (2005). Recent advances in rational gene transfer vector design based on poly (ethylene imine) and its derivatives. The Journal of Gene Medicine: A crossdisciplinary journal for research on the science of gene transfer and its clinical applications, 7(8), 992-1009.
Ong, Z. Y., Wiradharma, N., & Yang, Y. Y. (2014). Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced drug delivery reviews, 78, 28-45.
Paar, M. J., & Petutschnigg, A. (2016). Biomimetic inspired, natural ventilated façade–A conceptual study. Journal of Facade Design and Engineering, 4(3-4), 131-142.
Pillai, P., Saw, R. K., Singh, R., Padmanabhan, E., & Mandal, A. (2019). Effect of synthesized lysine-grafted silica nanoparticle on surfactant stabilized O/W emulsion stability: Application in enhanced oil recovery. Journal of Petroleum Science and Engineering, 177, 861-871.
Ringstad, L., Schmidtchen, A., & Malmsten, M. (2006). Effect of peptide length on the interaction between consensus peptides and DOPC/DOPA bilayers. Langmuir, 22(11), 5042-5050.
Ryu, K., Lee, M. K., Park, J., & Kim, T.-i. (2018). pH-Responsive Charge-Conversional Poly (ethylene imine)–Poly (l-lysine)–Poly (l-glutamic acid) with Self-Assembly and Endosome Buffering Ability for Gene Delivery Systems. ACS Applied Bio Materials, 1(5), 1496-1504.
Shao, X. R., Wei, X. Q., Song, X., Hao, L. Y., Cai, X. X., Zhang, Z. R., Peng, Q., & Lin, Y. F. (2015). Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell proliferation, 48(4), 465-474.
Shen, W., He, P., Xiao, C., & Chen, X. (2018). From Antimicrobial Peptides to Antimicrobial Poly (α‐amino acid) s. Advanced healthcare materials, 7(20), 1800354.
Shirvany, A., Rezayan, A. H., Alvandi, H., Barshan Tashnizi, M., & Sabahi, H. (2021). Preparation and Evaluation of a Niosomal Drug Delivery System Containing Cefazolin and Study of Its Antibacterial Activity [Original]. Iranian Journal of Medical Microbiology, 15(6), 638-657. https://doi.org/10.30699/ijmm.15.6.638
Shvero, D. K., Davidi, M. P., Weiss, E. I., Srerer, N., & Beyth, N. (2010). Antibacterial effect of polyethyleneimine nanoparticles incorporated in provisional cements against Streptococcus mutans. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94(2), 367-371.
Steinstraesser, L., Hirsch, T., Schulte, M., Kueckelhaus, M., Jacobsen, F., Mersch, E. A., Stricker, I., Afacan, N., Jenssen, H., & Hancock, R. E. (2012). Innate defense regulator peptide 1018 in wound healing and wound infection.
Striegler, C., Franke, M., Müller, M., Boye, S., Oertel, U., Janke, A., Schellkopf, L., Voit, B., & Appelhans, D. (2015). Amino acid modified hyperbranched poly (ethylene imine) with disaccharide decoration as anionic core–shell architecture: Influence of the pH and molecular architecture on solution behaviour. Polymer, 80, 188-204.
Sun, Y.-x., He, J.-h., Huang, J.-w., Sheng, Y., Xu, D., Bradley, M., & Zhang, R. (2020). Electrochemical recognition of tryptophan enantiomers based on the self-assembly of polyethyleneimine and chiral peptides. Journal of Electroanalytical Chemistry, 865, 114130.
Taniguchi, M., Noda, Y., Aida, R., Saito, K., Ochiai, A., Saitoh, E., & Tanaka, T. (2019). Cationic peptides from enzymatic hydrolysates of soybean proteins exhibit LPS-neutralizing and angiogenic activities. Journal of bioscience and bioengineering, 127(2), 176-182.
Tegos, G. P., Anbe, M., Yang, C., Demidova, T. N., Satti, M., Mroz, P., Janjua, S., Gad, F., & Hamblin, M. R. (2006). Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin (e6) for broad-spectrum antimicrobial photoinactivation. Antimicrobial agents and chemotherapy, 50(4), 1402-1410.
Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., & Pahl, A.-K. (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface, 3(9), 471-482.
Wang, Y.-Q., Su, J., Wu, F., Lu, P., Yuan, L.-F., Yuan, W.-E., Sheng, J., & Jin, T. (2012). Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. International journal of nanomedicine, 7, 693.
Yemul, O., & Imae, T. (2008). Synthesis and characterization of poly (ethyleneimine) dendrimers. Colloid and Polymer Science, 286(6), 747-752.
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. nature, 415(6870), 389-395.
Zasloff, M. (2019). Antimicrobial peptides of multicellular organisms: my perspective. Antimicrobial Peptides, 3-6.