Document Type : Research Paper

Authors

1 MSC.Biology Department,, Faculty of Bioscience, Tehran North Branch, Islamic Azad University. Tehran Iran

2 Assistant Professor , Biology Department,, Faculty of Bioscience, Tehran North Branch, Islamic Azad University. Tehran Iran

3 Associate Professor, Biology Department,, Faculty of Bioscience, Tehran North Branch, Islamic Azad University. Tehran Iran

4 Professor, Biology Department,, Faculty of Bioscience, Tehran North Branch, Islamic Azad University. Tehran, Iran

5 Professor, National Institute of Genetic Engineering and Biotechnology

Abstract

Phosphate fixation by chemical fertilizers, in addition to being costly, carries environmental risks. Today, fertile phosphate biofertilizer 2 contains two types of phosphate-solubilizing bacteria, decomposes insoluble phosphorus compounds and thus absorbable for the plant. The aim of this study was to evaluate the effect of fertile biofertilizers 2 Pseudomounas putida (Strain P13) and Pantoea aggilomerans (Strain P5) (only once at the beginning of the growing season) and potassium phosphate in three concentrations (0, 1.2 mM, 5 mM) (Until the end of the growing season,once a week with irrigation) on some developmental characteristics of Arabidopsis thaliana in greenhouse conditions, 15 hours of light, temperature 25 ° C, light intensity of 6000 lux was done in a randomized design. After cell-histology, slides were observed under a light microscope. The results showed a significant reduction in wood vascular density in the stems of plants treated with 5 mM and 1.2 mM potassium phosphate compared to the other two treatments. Also, 5 mM potassium phosphate increased the tunica layers and the special wall thickness of the tetrads. Cell proliferation of ovule primordium, pre-embryo, and suspensor was observed in plants treated with biofertilizer and 5 mM phosphate. Treatment with biofertilizer showed the highest average number of seeds produced. The application of fertile biofertilizer 2 in this experiment, with effects similar to potassium phosphate, increased the quantitative and qualitative yield of Arabidopsis. Biofertilizer can be effective as a safe alternative to increase soil productivity and plant growth in sustainable agriculture and minimize environmental pollution.

Keywords

اسدی، ف. خادمی، ز. 1392. تغییرات غلظت عناصر غذایی نیتروژن، فسفر و پتاسیم در اندام‌های مختلف گیاه ذرت طی مراحل مختلف
رشد. مجله پژوهش های خاک. جلد 27، شماره 4
باقری‌ابیانه، الف. مجد، الف. جعفری‌، سایه. 1396. بررسی ساختمان تشریحی تکوینی اندام‌های رویشی و زایشی در گیاه شاهی ((Lepidium sativum .L. فصلنامه علمی پژوهشی دانش زیستی ایران. جلد 12، شماره 1. 9-15
توحیدی‌نیا، م. ع. د. مظاهری، س. م. ب. حسینی، و. مدنی، ح. 1392. اثر مصرف توام کود زیستی بارور-2 و کود شیمیایی فسفر بر عملکرد دانه و اجزای عملکرد ذرت رقم سینگل کراس 704. مجله علوم زراعی ایران جلد 15، شماره4. صفحه 312-324
جعفری، س. شریف‌‌نیا، ف. پیوندی، م. نیکنام، ف. 1390. بررسی ساختار تشریحی اندام‌های رویشی گیاه عناب Zizyphus jujuba، فصلنامه علمی پژوهشی زیست‌شناسی تکوینی، سال سوم، شماره 10
رحمانی، ف. محمدی، الف. ع. مرادی، ح. 1398. مطالعه تاثیر فسفر بر گلدهی و برخی صفات رویشی گل آهار (Zinnia sp) در محیط حاوی ورمی کمپوست. نشریه علمی گل و گیاهان زینتی، جلد 4، شماره 1. صفحه 13-25
کلاهی، م. موسوی، س. حاج شریفی، ح. مساواتی، م. شیخ رضایی، م. ح. صفار، الف. کرد زنگنه، ع. 1396. بررسی ویژگی های تشریحی، عملکردی گیاه نیشکر (Saccharum officinarum L.) و میزان پتاسیم خاک در پاسخ به نیترات پتاسیم. فصلنامه علمی پژوهشی زیست شناسی تکوینی. سال نهم، شماره 2
مجد، الف. جعفری یزدی، الف. فلاحیان، ف. الف. خاوری نژاد، ر. ع. برنارد، ف. جاوید‌فر، ف. 1385. اثر تنش خشکی و آبسیزیک اسید بیرونی بر تکوین گیاه کلزا (Brassica napus L). ویژه نامه زیست شناسی. دوره 16، شماره 62. صفحه 1-11
مجیدیان، م. الف. قلاوند، ع. الف. کامکار حقیقی، ن. کریمیان. 1387. تاثیر تنش خشکی، کود نیتروژن و کود آلی بر قرائت کلروفیل، عملکرد دانه و اجزای عملکرد ذرت دانه‌ای رقم سنگل کراس 704. مجله علوم زراعی ایران. جلد 10، شماره 3. صفحه 330-303
ملبوبی، م.ع. 1386. ویژگیهای کود زیستی فسفات بارور 2. جهاد دانشگاهی، زیست فناور سبز، 104 صفحه.
Abbasi, M., Sharif, S., Kazmi, M., Sultan, T., and Aslam, M. (2011). Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosystems, 145(1), 159-168.
Afzal, A., Ashraf, M., Asad, S. A., and Farooq, M. (2005). Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int. J. Agric. Biol, 7(2), 207-209.
Ahmad, H., Sajjid, M., Hayat, S., Ullah, R., Ali, M., Jamal, A., Ali, J. (2017). Growth, Yield and Fruit Quality of Strawberry (Fragaria ananasa Dutch) under Different Phosphorus Levels. Research in Agriculture, 2.
Almaghrabi, O. A., Massoud, S. I., and Abdelmoneim, T. S (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1), 57-61.
Amtmann, A., Hammond, J. P., Armengaud, P., and White, P. J. (2005). Nutrient sensing and signalling in plants: potassium and phosphorus. Advances in Botanical Research, 43, 209-257.
Babalola, O. O., and Glick, B. R. (2012). The use of microbial inoculants in African agriculture: current practice and future prospects. J. Food Agric. Environ, 10(3 and 4), 540-549.
Betencourt, E., Duputel, M., Colomb, B., Desclaux, D., and Hinsinger, P. (2012). Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemistry, 46, 181-190.
Chapin I, F. S., and Wardlaw, I. F. (1988). Effect of phosphorus deficiency on source-sink interactions between the flag leaf and developing grain in barley. Journal of Experimental Botany, 39(2), 165-177.‏
Ciereszko, I., Balwicka, H., and Żebrowska, E. (2017). Acid phosphatases activity and growth of barley, oat, rye and wheat plants as affected by Pi deficiency. The Open Plant Science Journal, 10(1)
Cotter, M. (2005). Care of Arabidopsis thaliana at the Center for Plant Lipid Research. Denton: University of North Texas.
 Das, R. (2003). Characterization of responses of Brassica cultivars to elevated CO2 under moisture stress condition (Doctoral dissertation, Indian Agricultural Research Institute; New Delhi).‏
Ekin, Z. (2010). Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. African Journal of Biotechnology, 9(25), 3794-3800.
El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y., and Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in microbiology, 5, 651
Fankem, H., Nwaga, D., Deubel, A., Dieng, L., Merbach, W., and Etoa, F. X. (2006). Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. African Journal of Biotechnology, 5(24).
Franzke, A., German, D., Al-Shehbaz, I. A., and Mummenhoff, K. (2009). Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae. Taxon, 58(2), 425-437.
Gitz III, D. C., Liu-Gitz, L., Britz, S. J., and Sullivan, J. H. (2005). Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars. Environmental and Experimental Botany, 53(3), 343-355.‏
Hakeem, K. R., Rehman, R. U., and Tahir, I. (2014). Plant signaling: Understanding the molecular crosstalk: Springer.
 Honys, D., Reňák, D., and Twell, D. (2006). Male gametophyte development and function. Plant Biotechnol, 1, 209-22. 4.
Iqbal Hussain, M., Naeem Asghar, H., Javed Akhtar, M., and Arshad, M. (2013). Impact of phosphate solubilizing bacteria on growth and yield of maize. Soil and Environment, 32(1).
Kakani, V. G., Reddy, K. R., Zhao, D.,and Sailaja, K. (2003). Field crop responses to ultraviolet-B radiation: a review. Agricultural and forest meteorology, 120(1-4), 191-218.‏
Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy.
 Khan, Z., Rho, H., Firrincieli, A., Hung, S. H., Luna, V., Masciarelli, O., and Doty, S. L. (2016). Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Current Plant Biology, 6, 38-47.‏
Kohan, A., Haghighi, M., Mirghaffari, N., & Ehtemam, M. H. (2021). Effect of air pollution resulting from exhaust emission on the morphological, physiologic and biochemical responses of lettuce (Lactuca sativa var. longifolia Journal of Plant Process and Function, Vol. 9, No. 4.
Kumar, A., Singh, V. K., Tripathi, V., Singh, P. P., and Singh, A. K. (2018). Plant growth-promoting rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In Crop improvement through microbial biotechnology, 333-342: Elsevier.
Lake, J. A., Quick, W., Beerling, D. J., and Woodward, F. I. (2001). Signals from mature to new leaves. Nature, 411(6834), 154-154.
Latati, M., Bargaz, A., Belarbi, B., Lazali, M., Benlahrech, S., Tellah, S., Ounane, S. M. (2016). The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. European journal of agronomy, 72, 80-90.
‏Liu‐Gitz, L., Britz, S. J., & Wergin, W. P. (2000). Blue light inhibits stomatal development in soybean isolines containing kaempferol‐3‐O‐2G‐glycosyl‐gentiobioside (K9), a unique flavonoid glycoside. Plant, Cell & Environment23(8), 883-891.‏
Ma, X., Wang, Q., Rossi, L., and Zhang, W. (2016). Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical responses in Brassica rapa. Environmental science and technology, 50(13), 6793-6802.
Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current opinion in plant biology, 12(3), 250-258.
Malhotra, H., Sharma, S., and Pandey, R. (2018). Phosphorus nutrition: plant growth in response to deficiency and excess. In Plant nutrients and abiotic stress tolerance 171-190: Springer.
Mayer, U., Buttner, G., and Jurgens, G. (1993). Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development, 117(1), 149-162.
Mehra, P., Pandey, B. K., Verma, L., and Giri, J. (2019). A novel glycerophosphodiester phosphodiesterase improves phosphate deficiency tolerance in rice. Plant, cell and environment, 42(4), 1167-1179.
Mehta, P., Walia, A., Kulshrestha, S., Chauhan, A., and Shirkot, C. K. (2015). Efficiency of plant growth‐promoting P‐solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of basic microbiology, 55(1), 33-44.
Miller, S. H., Browne, P., Prigent‐Combaret, C., Combes‐Meynet, E., Morrissey, J. P., and O'Gara, F. (2010). Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environmental microbiology reports, 2(3), 403-411.
Minorsky, P. V. (2008). On the Inside. Plant Physiology, 148(2), 671.
Mishra, N., and Sundari, S. K. (2013). Native PGPMs as bioinoculants to promote plant growth: response to PGPM inoculation in principal grain and pulse crops. International Journal of Agriculture Food Science and Technology, 4(10), 1055-1064.
Morgan, J., Bending, G., and White, P. (2005). Biological costs and benefits to plant–microbe interactions in the rhizosphere. Journal of experimental botany, 56(417), 1729-1739.
Page, D. R., and Grossniklaus, U. (2002). The art and design of genetic screens: Arabidopsis thaliana. Nature Reviews Genetics, 3(2), 124-136.
Pagnussat, G. C., Yu, H.-J., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., Sundaresan, V. (2005). Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development, 132(3), 603-614.
Pandey, R., Chacko, P. M., Choudhary, M., Prasad, K., and Pal, M. (2007). Higher than optimum temperature under CO2 enrichment influences stomata anatomical characters in rose (Rosa hybrida). Scientia Horticulturae, 113(1), 74-81.
Panhwar, Q., Radziah, O., Zaharah, A., Sariah, M., and Razi, I. M. (2011). Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. Journal of environmental biology, 32(5), 607.
Pereira, S. I., and Castro, P. M. (2014). Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological engineering, 73, 526-535.
Péret, B., Clément, M., Nussaume, L., and Desnos, T. (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in plant science, 16(8), 442-450.
Puente, M., Bashan, Y., Li, C., and Lebsky, V. (2004). Microbial populations and activities in the rhizoplane of rock‐weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biology, 6(5), 629-642.
Qureshi, M., Ahmad, Z., Akhtar, N., Iqbal, A., Mujeeb, F., and Shakir, M. (2012). Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. J. Anim. Plant Sci, 22(1), 204-210.
Scheible, W.-R., and Rojas-Triana, M. (2015). Sensing, Signalling, And Control Of Phosphate Starvation In Plants: Molecular Players And Applications. Annual Plant Reviews, Phosphorus Metabolism in Plants, 48, 25.
Shamrov, I. I., Anisimova, G. M., and Babro, A. A. (2020). Early stages of anther development in flowering plants. Botanica Pacifica: a Journal of Plant Science and Conservation, 9(2), 3-12.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., and Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 1-14.
Smyth, D. R., Bowman, J. L., and Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. The Plant Cell, 2(8), 755-767.
Song, Y., Marschner, P., Li, L., Bao, X., Sun, J., and Zhang, F. (2007). Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils, 44(2), 307-314.
Sukriti, G., Srishti, D., Kriti, S., Nikhita, A., and Sundari, S. (2014). Investigating the role of PGPM in assisting plant growth under stress caused by organophosphate pesticide-phorate. Indo Global Journal of Pharmaceutical Sciences, 4. (3).
Sun, Y. M., Zhang, N. N., Wang, E. T., Yuan, H. L., Yang, J. S., and Chen, W. X. (2009). Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (Elymus sibiricus L.). FEMS Microbiology Ecology, 70(2), 218-226.
Tilak, K., Ranganayaki, N., Pal, K., De, R., Saxena, A., Nautiyal, C. S., Johri, B. (2005). Diversity of plant growth and soil health supporting bacteria. Current Science, 136-150.
Turk, M. A., and Tawaha, A.-R. M. (2002). Impact of seeding rate, seeding date, rate and method of phosphorus application in faba bean (Vicia faba L. minor) in the absence of moisture stress. BASE.
Uprety, D., Dwivedi, N., Jain, V., and Mohan, R. (2002). Effect of elevated carbon dioxide concentration on the stomatal parameters of rice cultivars. Photosynthetica, 40(2), 315-319..
Velázquez, E., Carro, L., Flores-Félix, J. D., Martínez-Hidalgo, P., Menéndez, E., Ramírez-Bahena, M.-H., Peix, A. (2017). The legume nodule microbiome: a source of plant growth-promoting bacteria. In Probiotics and plant health 41-70: Springer.
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255(2), 571-586.
Yadav, J., Verma, J. P., Jaiswal, D. K., and Kumar, A. (2014). Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological engineering, 62, 123-128.
Yeung, E. C. (1984). Histological and histochemical staining procedures. Cell culture and somatic cell genetics of plants, 1, 689-697.
Zahid, M. (2015). Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in microbiology, 6, 207.
Zhang, Z., Liao, H., and Lucas, W. J. (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of Integrative Plant Biology, 56(3), 192-220.
Zhu, H.-J., Sun, L.-F., Zhang, Y.-F., Zhang, X.-L., and Qiao, J.-J. (2012). Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresource Technology, 111, 410-416.