Document Type : Research Paper

Authors

1 Graduated from the Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran

2 Associate Professor, Department of Biology, Faculty of Science, University of Shahrekord, Shahrekord, Iran

3 Assistant Professor, Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

Plants pre-treatment with various chemicals has often been used to diminish salinity stress impact on plants. In the present study, we used foliar spray of two antioxidant compounds (β -carotene and gallic acid) before the stress, to study interactive effect of antioxidants and salinity stress in seedlings of Lepidium sativum L. Our results showed growth indices, relative water content (RWC), chlorophyll a, chlorophyll b and chlorophyll a/b were negatively affected by 25 mM NaCl. The results obtained in the present study showed the beneficial effects of the pre-treatments of two antioxidants in of Lepidium sativum L. seedling under non salinity stress condition with respect to increasing root dry weight, RWC, photosynthetic pigments and the content of carbohydrate. The results suggested that foliar spray of β -carotene and gallic acid could considerably diminish NaCl-caused stress on Lepidium sativum L. seedlings, probably due to higher accumulation of plant biomass, photosynthetic pigments, RWC and carbohydrate content, as well as significant reduction of H2O2 and malondialdehyde (MDA) content. Collectively, it could be concluded that, the accumulation of osmotic metabolites and the intensification antioxidant systems during β -carotene and gallic acid -mediated pretreatments can diminish the deleterious effects of reactive oxygen species (ROS) induced by NaCl stress through preventing the lipid peroxidation and scavenging cytotoxic H2O2. Therefore, usage of antioxidant compounds as a pretreatment under salinity stress may be advantageous for increasing biomass and osmotic adjustment in Lepidium sativum L. seedlings

Keywords

احسانپور، ع. ا. و اسکندری، ه. (1394). اثر بتاکاروتن بر ریشه‌دهی و برخی از شاخص‌‌های فیزیولوژیک گیاه گوجه‌فرنگی (Lycopersicon esculentum Mill) تحت تنش شوری در شرایط کشت درون شیشه‌ای. خشکبوم، 5، 1-9.
نجارخدابخش، آ. و چاپارزاده، ن. 1394. نقش آسکوربیک اسید در تقلیل اثرات اکسیداتیو شوری روی گیاه شاهی. مجله پژوهشهای گیاهی، 185-175.
Ahmad, P., Jaleel, C. and Sharma, S. (2010). Antioxidant defense system, lipid peroxidation, proline metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian Journal of Plant Physiology, 57:509-517.
Alexieva, V., Sergiev, I., Mapelli, S.  and Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell  Environment, 24: 1337-134.
Arnon, D. (1949). Determination of chlorophyll concentration in leaf tissues of plants. Plant Physiol. 24.
Azooz, M. M., Alzahrani, A. M. Youssef, M. M. (2013). The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Australian Journal of Crop Science, 7: 2091-2100.
Coesel, S. N., Baumgartner, A. C., Teles, L. M., Ramos, A. A., Henriques, N. M., Cancela, L.  and Varela, J. C. S. (2008). Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Marine Biotechnology, 10: 602-612.
Dash, M.  and Panda, S. (2001). Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds. Biologia Plantarum, 44: 587-589.
Falana, H., Nofal, W. and Nakhleh, H. (2014). A review article Lepidium sativum (Garden cress). Pharm-D Program, College of Nursing, Pharmacy and Health Professions, Birzeit University, 1-8.
Fratianni, A., Cinquanta, L. and Panfili, G. (2010). Degradation of carotenoids in orange juice during microwave heating. LWT-Food Science and Technology, 43: 867-871.
Gokul, A.; Fahiem Carelse, M.; Niekerk, L.-A.; Klein, A.; Ludidi, N.; Mendoza-Cozatl, D.; Keyster, M. (2021). Exogenous 3,30-Diindolylmethane improves vanadium stress tolerance in Brassica napus seedling shoots by modulating antioxidant enzyme activities. Biomolecules, 11: 436.
Heuer, B. (2010). Role of proline in plant response to drought and salinity. Handbook of Plant and Crop Stress. CRC Press, Boca Raton, 213-238.
Li, D.M., Nie, Y.X., Zhang, J., Yin, J.S., Li, Q., Wang, X.J. and Bai, J.G. (2013). Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings. Biologia Plantarum, 57:711-717.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. Elsevier, 148: 349-382.
Liu, Y., Hou, L.-Y., Li, Q.-M., Jiang, Z.-P., Liu, D. Zhu, Y. (2016). The effects of exogenous antioxidant germanium (Ge) on seed germination and growth of Lycium ruthenicum Murr subjected to NaCl stress. Environmental Technology, 37: 909-919.
Makoi, J. H.  and Ndakidemi, P. A. (2012). Allelopathy as protectant, defence and growth stimulants in legume cereal mixed culture systems. New Zealand Journal of Crop and Horticultural Science, 40: 161-186.
Maqbool, N., Wahid, A., Farooq, M., Cheema, Z.  and Siddique, K. (2013). Allelopathy and abiotic stress interaction in crop plants. Allelopathy. Springer, Berlin, Heidelberg, 451-468.
Masood, A., Shah, N. A., Zeeshan, M. and Abraham, G. (2006). Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environmental and Experimental Botany, 58: 216-222.
Mekawy, A.M.M., Abdelaziz, M.N. and Ueda, A. 2018. Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiology and Biochemistry, 130: 94-104.
Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4): 523-530.
Mirza, M., and N.M. Najafpour. (2006). Essential oil composition of Lepidium sativum L. Iranian Journal of Medicinal and Aromatic Plants, 4(30):481-488.
Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell & Environment. 16:15-24.
Noctor, G. and Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology, 49: 249-279.
Nuccio, M. L., Rhodes, D., Mcneil, S. D. and Hanson, A. D. (1999). Metabolic engineering of plants for osmotic stress resistance. Current Opinion in Plant Biology, 2: 128-134.
Ozfidan-Konakci, C., Yildiztugay, E., Yildiztugay, A. Kucukoduk, M. (2019). Cold stress in soybean (Glycine max L.) roots: exogenous gallic acid promotes water status and increases antioxidant activities. Botanica Serbica, 43: 59-71.
Pooter, H. and Villar, R. 1997. The fate acquire carbon in plants: chemical composition and constructions costs. Plant Resource Allocation. 39-72.
Reckziegel, P., Dias, V.T.,  Benvegnú, D.M. , Boufleur, N., Barcelos, R.C.S. , Segat, H.J.,  Pase, C.S., Dos Santos, C.M.M.,  Flores, É.M.M. and Bürger, M.E. (2016). Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats. Toxicology reports, 3:351-356.
Sharma, P., Gautam, A., Kumar, V., Khosla, R., Guleria, P. (2021). Naringenin reduces Cd-induced toxicity in Vigna radiata (mungbean). Plant Stress 1: 100005.
Singh, A., Gupta, R. and Pandey, R. (2017). Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. Physiology and Molecular Biology of Plants, 23: 301-309.
Sudhakar, C., Lakshmi, A. and Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161: 613-619.
Telfer, A.( 2014). Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant and Cell Physiology, 55: 1216-1223.
Troll, W. and Lindsley, J. (1955). A photometric method for the determination of proline. Journal of Biological Chemistry, 215: 655-660.
Yousuf, M. J. and Vellaichamy, E. (2015). Protective activity of gallic acid against glyoxal-induced renal fibrosis in experimental rats. Toxicology Reports, 2: 1246-1254.