Document Type : Research Paper

Authors

1 PhD Student Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Professor, Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran;

3 Associate Professor Soil and Water Research Institute, AREEO, Karaj, Iran

4 Associate Professor, Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran

5 Assistant Professor, Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran

Abstract

The aim of this study was to isolate and characterize phosphate-solubilizing bacteria from two phosphate mines and to investigate their soil phosphate solubility ability. Eighty five colonies with different morphologies were isolated and purified using the liquid Sperber culture medium enriched with Yazd’ Esphordi soil phosphate (YESP) and a form of diluents series in the Sparber solid culture medium enriched with YESP. Four out of 85 isolates (Rpy: from Esfordi mine and Tkd/4, Ggd/4 & Rpd/4 from Jiroud mine) with the highest amount of dissolved phosphorus in the Sperber liquid medium enriched with YESP as superior isolates were selected. With using 16S rRNA gene sequencing the isolates Tkd/4, Rpd/4, Rpy and Ggd/4 were recognized very closely (more than 99%) to Curtobacterium flaccumfaciens, Sphingobium yanoikuyae, Bacillus pumilus and Pantoaea aglomerans genera respectively. The multifold release of phosphorus by these isolates compared to the control from three phosphate sources showed that these bacteria can dissolve other phosphate sources.

Keywords

Main Subjects

حیاتی، م.، قلی­زاده، ع.، فلاح نصرت آباد، ع و رضوانی، م. 1390. تأثیر باکتری coagulans Bacillus و منابع مختلف سنگ فسفات بر گیاه کلزا Brassica napus L.)). مجله دانش آب و خاک، 21: 127- 136.
خوشرو، ب و ساریخانی، م (1396).  جداسازی و شناسایی باکتری­های حل­کننده فسفات مقاوم به دما برای استفاده در کود میکروبی فسفاتی. نشریه آب و خاک (علوم و صنایع کشاورزی). 32: 155-167.
مقدسی، س.ج. (1395) . کانی­شناسی و زمین­شیمی عناصر خاکی کمیاب نهشته فسفات جیرود در دره شمشک، شمال تهران. فصلنامه علمی علوم زمین. 26: 313-324.
پاکنژاد، ح. (1370). اکتشافات تکمیلی کانسار اسفوردی. نقشه­برداری ایران. 89 صفحه. تهران.
Asea, P.E.A., Kucey, R.M.N. and Stewart, J.W.B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20: 459-464.
Azaroual, S.E., Hazzoumi, Z., Mernissi, N.E., Aasfar, A., Kadmiri, M. and Bouizgarne, B. (2020). Role of inorganic phosphate solubilizing bacilli isolated from moroccan phosphate rock mine and rhizosphere soils in wheat (Triticum aestivum L.) phosphorus uptake. Current Microbiology, 77:  2391–2404.
Babana, A.H. and Antoun, H. (2006). Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.). Plant soil, 287: 51-58.
Babu, S.V., Triveni, S., Reddy, R.S. and Sathyanarayana, J. (2017). Isolation and characterization of phosphate solubilizing microorganisms from maize rhizosperic soils. Bulletin of Environment Pharmacolgy and Life Science, 6: 194–200.
Cao, Y., Fu, D., Liu, T., Guo, G. and Hu, Z. (2018). Phosphorus solubilizing and releasing bacteria screening from the rhizosphere in a natural wetland. Water, 10: 2. 195.
Goldstein, A.H. (1994). Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. Phosphate in microorganisms: cellular and molecular biology. 197-203. ASM Press, Washington, DC.
Gothwal, R.K., Nigam, V.K., Mohan, M.K., Sasmal, D. and Ghosh, P. (2006). Phosphate solubilization by rhizospheric bacterial isolates from economically important desert plants. Indian Journal of Microbiology, 46: Pp355.
Gupta, R., Singal, R., Shankar, A., Kuhad, R.C. and Saxena, R.K. (1994). A modified plate assay for screening phosphate solubilizing microorganisms. The Journal of General and Applied Microbiology, 40: 255-260.
Gupta, N., Sabat, J., Parida, R. and Kerkatta, D.(2007). Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Botanica Croatica, 66: 2. 197-204.
Hamdali, H., Moursalou, K., Tchangbedji, G., Ouhdouch, Y. and Hafidi, M. (2012). Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. African Journal of Biotechnology, 11: 312-320.
Haouas, A., El Modafar, C., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A. and Amir, S. (2020). Alcaligenes aquatilis GTE53: Phosphate solubilising and bioremediation bacterium isolated from new biotope “phosphate sludge enriched-compost”. Saudi Journal of Biological Sciences, 28: 371-379.
Kennedy, A.C. and Smith, K.L. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant and soil, 170: 75-86.
Li, Y., Zhang, J., Zhang, J., Xu, W. and Mou, Z. (2019). Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a eutrophic lake. International journal of environmental research and public health, 16: 2141.
Liu, S. (2019). Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in Reclamation Soil in Shanxi, China. Frontiers in microbiology, 10: 2171.
Liu, Z., Li, Y.C., Zhang, S., Fu, Y., Fan, X., Patel, J.S. and Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96: 217-224.
Mendoza-Arroyo, G.E., Chan-Bacab, M.J., Aguila-Ramírez, R.N., Ortega-Morales, B.O., Canché Solís, R.E., Chab-Ruiz, A.O. and Camacho-Chab, J.C. (2020). Inorganic phosphate solubilization by a novel isolated bacterial strain Enterobacter sp. itcb-09 and its application potential as biofertilizer. Agriculture, 10: 383.
Mursyida, E., Mubarik, N.R. and Tjahjoleksono, A. (2015). Selection and identification of phosphate-potassium solubilizing bacteria from the area around the limestone mining in Cirebon quarry. Research Journal of Microbiology, 10: 270.
Oliveira, C.A., Alves, V.M.C., Marriel, I.E., Gomes, E.A., Scotti, M.R., Carneiro, N.P., Guimaraes, C.T., Schaffert, R.E. and Sá, N.M.H. (2009). Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, 41: 1782-1787.
Paul, D. and Sinha, S.N. (2013). Isolation of phosphate solubilizing bacteria and total heterotrophic bacteria from river water and study of phosphatase activity of phosphate solubilizing bacteria. Advances in Applied Science Research, 4: 409-412.
Perez, E., Sulbaran, M., Ball, M.M. and Yarzabal, L.A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry, 39: 2905-2914.
Perez -Rodriguez, M.M., Piccoli, P., Anzuay, M.S., Baraldi, R., Neri, L., Taurian, T. and Cohen, A.C. (2020). Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific reports, 10: 15642.
Puente, M.E., Bashan, Y., Li, C.Y. and Lebsky, V.K. (2004). Microbial populations and activities in the rhizoplane of rock weathering desert plants. I. root colonization and weathering of igneous rocks. Plant Biology, 6: 629-642.
Qimei, L.I.N., Xiaorong, Z., Yanxin, S.U.N. and Jun, Y. (2000). Community characters of soil phosphobacteria in four ecosystems. Soil and Environmental Sciences, 9: 34-37.
Rengel, Z. (1999). Mineral nutrition of crops: Fundamental mechanisms and implications. CRC Press.
Rodriguez, H. and Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, 17: 319-339.
Singh, H. and Reddy, M.S. (2011). Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, 47: 30-34.
Sperber, J.I. (1958). Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research, 9: 782-787.
Stocklin, J. (1968). Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulletin, 52:1229-1258.
Teng, Z., Chen, Z., Zhang, Q., Yao, Y., Song, M. and Li, M. (2019). Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China. Environmental Science and Pollution Research, 26: 33976-33987.
Tomer, S., Suyal, D.C., Shukla, A., Rajwar, J., Yadav, A., Shouche, Y. and Goel, R. (2017). Isolation and characterization of phosphate solubilizing bacteria from Western Indian Himalayan soils. 3 Biotech, 7: 1-5.
Turan, M., Ataoglu, N. and Şahιn, F. (2006). Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. Journal of Sustainable Agriculture, 28: 99-108.
Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173: 697-703.
Xiao, C.Q., Wu, X.Y. and Chi, R.A. (2015). Dephosphorization of high-phosphorus iron ore using different sources of Aspergillus Niger strains. Applied Biochemistry and Biotechnology, 176: 2. 518–528.
Xiao, C., Zhou, Y., Hu, J., Guo, S., Zhou, N. and Chi, R. (2020). Biosolubilization of low-grade rock phosphate by native microbial consortia from phosphate mines: effect of sampling sources and culture media. Geomicrobiology Journal, 37: 9. 859-866.
Xiao, C.Q., Chi, R.A., He, H. and Zhang, W.X. (2009). Characterization of tricalcium phosphate solubilization by Stenotrophomonas maltophilia YC isolated from phosphate mines. Journal of Central South University of Technology, 16: 581-587.
Yadav, H., Gothwal, R.K., Solanki, P.S., Nehra, S., Sinha-Roy, S. and Ghosh, P. (2015). Isolation and characterization of thermo-tolerant phosphate-solubilizing bacteria from a phosphate mine and their rock phosphate solubilizing abilities. Geomicrobiology Journal, 32: 475-481.
Zhang, T., Hu, F. and Ma, L. (2019). Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Sciences, 14: 246-254.