Document Type : Research Paper

Authors

1 Master student of Biology Department, Faculty of Basic Sciences, Golestan University, Golestan Province

2 Assistant Professor, Department of Biology, Faculty of Basic Sciences, Golestan University, Golestan Province

3 Assistant Professor National Institute of Oceanography and Atmospheric Sciences, Tehran

Abstract

Sexual dimorphism of gnathopods 1 and 2 and uropod 3’ shapes in Parhyale darvishi (Momtazi and Maghsoudlou, 2016) were investigated by geometric morphometrics. A total 50 males and 50 females were experimented. Anatomical aspects of gnathopods and uropods were photographed and cartesian coordinate (semilandmarks of organs' margin) aligned by semilandmark sliding based on minimum bending energy. Statistical significance of sexual dimorphism was tested by multivariate analysis of variances; linear discriminant analysis and clustering analysis (ward method). Multivariate regression analysis based on partial warps and uniform components was used to depicting shape variations related to sex [1]in studied anatomical parts in the form of deformation frames. The results show all three anatomical parts was significantly different shape in male and females (F>17.15, p < 0.0001). The deformation regression frameworks of first gnathopod show that the ratio of length to width in females are less than males. The second gnathopod has an oval shape in females instead of circular form in males. The shape of third uropod in males is more extended and bearing subacute angles. Based on present studies, the accurate description of sexual dimorphism specially in taxonomic characters provide ability for identification based on females and detail study of species.



 

Keywords

صناعی، ا. (1394) بررسی تنوع بین جمعیتی سوسک سرخرطومی یونجه Hypera postica (Coleoptera: Curculionidae) به روش ریخت سنجی هندسی. پایان نامه کارشناسی ارشد در رشته بیوسیستماتیک جانوری. دانشگاه تهران.
ممتازی، ف. (1392) تاکسونومی و بررسی تغییرات بین جمعیتی دوجورپایان بین جزر و مدی سواحل ایرانی خلیج فارس و دریای عمان. رساله دکترا در رشته بیوسیستماتیک جانوری. دانشگاه تهران.
Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys. 4: 40–79.
BagherianYazdi, A., Münch, W. and Seifert, B. (2012). A first demonstration of interspecific hybridization in Myrmica ants by geometric morphometrics (Hymenoptera: Formicidae). Myrmecological News. 17. 121-131.
BagherianYazdi. A. (2014). Application of geometric morphometrics to analyze allometry in two species of the genus Myrmica (Hymenoptera: Formicidae). Soil Organisms. 86(1):77-84.
Barnard, J. L. (1971). Keys to the Hawaiian marine Gammaridea, 0-30 meters. Smithson. Contrib. Zool. 58:1-135.
Barnard, J. L. (1975). Identification of gammaridean amphipods. In RI Smith, JT Carlton, eds. Light’s manual: intertidal invertebrates of central California coast, 3rd ed. London: Univ. of California Press, pp. 313-376.
Bookstein, F. L., Streissguth, A. P., Sampson P. D., Connor P.D. and Barr, H. M. (2002). Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. NeuroImage 15: 233–251.
Borowsky, B. (1984). The use of the males’ gnathopods during precopulation in some gammaridean amphipods. Crustaceana. 47:245–250.
Bousfield, E. L. (1989). Revised morphological relationships within the amphipod genera Pontoporeia and Gammaracanthus and the ‘‘Glacial relict’’ significance of their post glacial distributions. Canadian Journal of Fisheries and Aquatic Sciences. 46: 1714-1725.
Clark, R. A. (1997). Dimorphic males display alternative reproductive strategies in the marine amphipod Jassa marmorata Holmes (Corophioidae: Ischyroceridae). Ethology. 103: 531-553.
Conlan, K. E. (1991). Precopulatory mating behavior and sexual dimorphism in the amphipod Crustacea. Hydrobiologia, 223, 255-282.
Curatolo, T., Calvaruso, C., Galil, B. and Lo Brutto, S. (2013). Geometric morphometry supports a taxonomic revision of the Mediterranean Bathyporeia guilliamsoniana (Spence Bate, 1857) (Amphipoda, Bathyporeiidae). Crustaceana. 86. 820-828.
Darwin, C. (1871). The descent of man and selection in relation to sex. John Murray, London, 960Pp
Grosse, D. J., Pauley, G. B. and Moran, D. (1986). Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest) Amphipods. United states Fish and Wildlife Service Biological Report, 82, 11-69.
Hammer, Ø., Harper, D.A.T. and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp.
Hartnoll, R.G. (1982). Growth. In: Bliss, D. E. eds. The biology of Crustacea: embriology, morphology and genetics. New York, Academic. p. 11-196. 
Hay, M. E., Fenical, W. and Gustafson, K. (1987). Chemical defense against different marine herbivores: are amphipods insect equivalents? Ecology. 68(6), 1567- 1580.
Horton, T., Lowry, J., De Broyer, C., Bellan-Santini, D., Coleman, C.O., Corbari, L., Costello, M.J.,  Daneliya, M., Dauvin, J.-C., Fišer, C., Gasca, R., Grabowski, M., Guerra-García, J.M., Hendrycks, E., Hughes, L., Jaume, D., Jazdzewski, K., Kim, Y.-H., King, R., Krapp-Schickel, T., LeCroy, S., Lörz, A.-N., Mamos, T., Senna, A.R., Serejo, C., Sket, B., Souza-Filho, J.F., Tandberg, A.H., Thomas, J.D., Thurston, M., Vader, W., Väinölä, R., Vonk, R., White, K. and Zeidler, W. (2019). World Amphipoda Database. Parhyale (Stebbing, 1897). Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetailsandid=101549 on 2019-05-14
Hume, K., Elwood, R., Dick, J. and Morrison, Jenny. (2005). Sexual dimorphism in amphipods: The role of male posterior gnathopods revealed in Gammarus pulex. Behavioral Ecology and Sociobiology. 58. 264-269.
Iyengar, V. and Starks, B. (2008). Sexual selection in harems: Male competition plays a larger role than female choice in an amphipod. Behavioral Ecology. 19. 642-649.
Kao D., Lai A. G., Stamataki, E., Rosic, S., Konstantinides, N., Jarvis, E., Donfrancesco, A. D., Pouchkina-Stancheva, N., Sémon, M., Grillo, M., Bruce, H., Kumar, S., Siwanowicz, I., Le, A., Lemire, A., Eisen, M. B., Extavour, C., Browne, W. E., Wolff, C., Averof, M., Patel, N. H., Sarkies, P., Pavlopoulos, A. and Aboobaker A. (2006). The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLIFE. 5. 10.7554/eLife.20062.
Momtazi, F., Maghsoudlou, A. (2016). Parhyale darvishi, a new widely distributed amphipod species, in the Persian Gulf and the Gulf of Oman (Crustacea, Amphipoda, Hyalidae). Zootaxa. 4132(3): 364-372.
Myers, A. A., Trivedi, J. N., Gosavi, S., & Vachhrajani, K. D. (2017). A new species of genus Parhyale Stebbing, 1897 (Crustacea, Amphipoda, Hyalidae) from Gujarat State, India. Zootaxa, 4294(5), 593-599.
Moore, P.G. and Wong, Y.M. 1996. Observations on the life history of Orchomene nanus (Kryer) (Amphipoda: Lysianassoidea) at Millport, Scotland as deduced from baited trapping. Journal of Experimental Marine Biology and Ecology. 195: 53-70.
Olasso, I. (1999). The pelagic fish food web. Ber Polarforsch (Bremerhaven) 301, 110-118.
Rehm, E. J., Hannibal, R. L., Chaw, R. C., Vargas-Vila. M. A. and Patel, N. H. (2009). The crustacean Parhyale hawaiensis: a new model for arthropod development. Cold Spring Harbor Protocols. 2009 (1).
Riedlecker, E., Ashton, G. and Ruiz, G. (2009). Geometric morphometric analysis discriminates native and non-native species of Caprellidae in western North America. Journal of the Marine Biological Association of the United Kingdom. 89(3), 535-542.
Rohlf, F. J. (2003): tpsSmall: Calculation of shape variation, Version 1.20. – Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook [http://life.bio.sunysb.edu/morph].
Rohlf, F. J. (2009): tpsRegr: shape regression, version 1.37. – Department of Ecology and Evolution, State University of New York at Stony Brook, New York [http://life.bio.sunysb. edu/morph].
Rohlf, F.J., (2010a): tpsDig-Thin Plate Spline Digitizer Version 2.16. – Department of Ecology and Evolution, State University of New York at Stony Brook, New York [http:// life.bio.sunysb.edu/morph].
Rohlf, F. J. (2010b): tpsRelw: Relative warps analysis, version 1.49. – Department of Ecology and Evolution, State University of New York at Stony Brook, New York [http:// life.bio.sunysb.edu/morph].
Seifert, B., BagherianYazdi, A. and Schultz, R. (2014). Myrmica martini sp. n. - a cryptic species of the Myrmica scabrinodis species complex (Hymenoptera: Formicidae) revealed by geometric morphometrics and nest-centorid clustering. Myrmecological News. 19:171-183.
Sheets, H. D., Kim, K. and Mitchell C.E. (2004). A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician Trilobite Triarthrus becki. Applications of Morphometrics in Paleontology and Biology. Springer, New York: 67–81.
Sutcliffe, D. W. (1992). Reproduction in Gammarus (Crustacea, Amphipoda) basic processes. Freshwater Forum 2: 102-128.
Tamaki, A., Kagesawa, T., Takeuchi, S., and Sassa, S. (2018). Sexual dimorphism in the gammaridean amphipod, Urothoe carda Imbach, 1967, from an intertidal sandflat in southern Japan. Acta Zoologica. 1–6
Tsoi, K. H. and Chu, K. H. (2005). Sexual dimorphism and reproduction of the amphipod Hyale crassicornis Haswell (Gammaridea: Hyalidae). Zoological Studies, 44(3), 382.
Wellborn, G. A. (2000). Selection on a sexually dimorphic trait in ecotypes within the Hyalella azteca species complex (Amphipoda: Hyalellidae). American Midland Naturalist 143: 212-225.
Yu, H. and Yang, J. (2001). A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition. 34 (10): 2067–2069.