Document Type : Research Paper

Authors

Abstract

The emergence of drug resistant pathogens indicates
the need to discovery of new antibiotics. In the search for a new antibiotic
producing microorganism, an Alcaligenes faecalis subsp. faecalis strain was isolatedfrom oil
polluted soils near Dezful. One factor at a time was used to find important
variables in antimicrobial compound production and upon its result pH = 9,
temperature 35 ˚C, NH4Cl 0.34%, sodium acetate 2% and K2HPO4
0.02% have greatest effect on production, respectively. Acetate and NH4Cl
concentration, shaker revolution and fermentation time were selected for
optimization by response surface method with central composite design. The best
result achieved by sodium acetate 1.88%, NH4Cl 0.29%, shaker 3 rpm
and fermentation time 6.7 day which had 47% higher production than one factor
at a time method. Results also indicated strong interaction between some
variables.  

Keywords

  •  

    • Bacic, M. K. & Yoch, [M1] [LS2] D. C., (2001). Antibiotic composition from Alcaligenes species and method for making and using the same. United States patent. US 6,224,863.
    • Berdy, J. (2012). Thoughts and facts about antibiotics: Where we are now and where we are heading. Journal of Antibiotics 65[M3] [LS4] : 385–395.
    • Bode H. B., Bethe B., Hofs R., & Zeeck[M5] [LS6]  A., (2002). Big Effects from Small Changes: Possible Ways to Explore Nature's Chemical Diversity. Chemistry and Biochemistry, 3: 619 – 627.
    • Busse, H-J. & Auling [M7] [LS8] G., (2005).Genus I. Alcaligenes, Castellani and Chalmers 1919, 936ALPP: 653-658 in Brenner, D. J., Krieg, N. R., Staley J. T. & Garrity G. M., (eds). Bergey’s manual of systematic bacteriology 2nd edition, volume two, The Proteobacteria, Part C, The Alpha-, Beta-, Delta-, and Epsilon proteobacteria[M9] [LS10] . Springer.
    • Clark, G. J., Langley, D. & Bushelll [M11] [LS12] M. E., (1995). Oxygen limitation can induce microbial secondary metabolite formation :investigations with miniature electrodes in shaker and bioreactor culture. Microbiology. 141: 663-669.
    • Cole, J. R., Wang,Q., Cardenas,E., Fish,J., Chai,B., Farris,R. J., Kulam-Syed-Mohideen,A. S., McGarrell,D. M., Marsh,T., Garrity,G. M., and Tiedje,J. M.,(2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research. 37.
    • Duncan, K., Levetin.  E., Wells, H., Jennings, E., Hettenbach, S., Bailey, S., Lawlor, K., Sublette, K., &Fisher, J. B., (1997). Managed Bioremediation of Soil Contaminated with Crude Oil Soil Chemistry and Microbial Ecology Three Years Later. Applied Biochemistry and Biotechnology. 63-65: 879-889.
    • Fang, X., Han, L., Cao, X., Zhu, M., Zhang, X. & Wang, Y. (2012). Statistical Optimization of Process Variables for Antibiotic Activity of Xenorhabdus bovienii. PLoS ONE 7(6): e38421.
    • Kapley, A., Sagarkar, S., Tanksale, H., Sharma, N., Qureshi, A., Khardenavis, A. & Purohit, H. J., (2013). Genome sequence of Alcaligenes sp. strain HPC1271. Genome Announcement. 1(1):e00235-12.
    • Kavroulakis, N., Ntougias, S., Besi, M. I., Katsou, P., Damaskinou, A., Ehaliotis, C., Zervakis G.I. & Papadopoulou, K. K., (2010).Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporus sp. radicis-lycopersici. Plant Soil. 333:233–247.
    • Knight,V., Sanglier, J.J., DiTullio, D., Braccili, S., Bonner, P., Waters J., Hughes, D.& Zhang, L., (2003). Diversifying microbial natural products for drug discovery. Applied Microbiology and Biotechnology. 62:446–458.
    • López, R., Monteón, V., Chan, E., Montejo, R. & Chan M., (2012). Oxygen limitation favors the production of protein with antimicrobial activity in Pesudoalteromonas SP. Brazilian Journal of Microbiology.1206-1212
    • Maré, I. J. & Coetzee, J. N., (1964). Antibiotics of Alcaligenes faecalis. Nature. 203: 430-431.
    • Rice, LB. (2006) Antimicrobial resistance in Gram-positive bacteria. American Journal of Infection Control. 34(Suppl. 1): S11-19.
    • Rokem, J. S., Lantz A. E. & Nielsen J., (2006). Systems biology of antibiotic production by microorganisms. Natural Products Reports. 24: 1262–1287.
    • Schlegel H. G. (1992). Allgemeine mikrobiologie. 7 Auflage. Georg ThiemeVerlag. PP: 192.
    • Silva, C.J.S.M. & Roberto, I.C. (2001) Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Process in Biochemistry. 36: 1119–1124.
    • Tokunaga, T., Kamigiri, K., Orita, M., Nishikawa, T., Shimizu, M. & Kaniwa, H., (1996). Kalimantacin A, B and C, novel antibiotics produced by Alcaligenes faecalis sp. Yl-02632S: physic-chemical properties and structure elucidation. Journal of Antibiotics (Tokyo). 49: 140-144.
    • Wang,Y., H., Feng, J.T., Zhang Q.& Zhang X. (2008). Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology. Journal of Applied Microbiology. 104: 735–744.
    • Yaghoobi Avini, M., Daraei, M & Ebrahimipour, Gh. (2014). Antimicrobial activity of an Alcaligenese faecalis straiisolated from oil contaminated soils. Journal of Medical Laboratory Sciences 8(5): 49-55. In PersiشدM1]ب [د