نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد بیوتکنولوژی کشاورزی، دانشگاه محقق اردبیلی، اردبیل

2 دانشیار،عضو هیات علمی گروه زراعت و اصلاح نباتات- دانشکده علوم کشاورزی- دانشگاه محقق اردبیلی

3 دانشیار،گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل

4 استادیار،گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل

چکیده

سالیسیلیک اسید و جاسمونات‌ها از تنظیم کننده های رشدی هستند که در مکانیسم‌های دفاعی گیاهان در برابر تنش‌های زیستی و غیرزیستی و تولید متابولیت‌های ثانویه نقش مهمی دارند. در این تحقیق تأثیر متیل جاسمونات و سالیسیلیک اسید بر میزان پراکسیدهیدروژن، پرولین و پروتئین کل و فعالیت آنزیم‌های آنتی اکسیدان مورد بررسی قرار گرفت. کشت سوسپانسیون سلولی خشخاش ایرانی در محیط MS مایع حاوی 2,4-D، کینتین و آسکوربیک اسید انجام گردید. سلول‌ها تحت تأثیر تیمار های متیل جاسمونات (100 میکرومولار) و سالیسیلیک اسید (75 میلی گرم بر لیتر) قرار گرفتند و در زمان‌های 12، 24، 36، 48 و 144 ساعت پس از اعمال تیمار بررسی شدند. نتایج نشان داد pH محیط کشت در اثر اعمال هر دو تیمار افزایش یافت. تیمارهای محرک، زنده مانی سلولی و رشد سلول ها را نسبت به شاهد کاهش دادند و این کاهش در روز ششم بعد از اعمال تیمار بیشتر بود. مقدار پراکسیدهیدروژن در تمام دوره‌های زمانی مورد ارزیابی در سلول‌های تیمار شده با متیل جاسمونات در مقایسه با سالیسیلیک اسید و شاهد بیشتر بود. مقدار پرولین و پروتئین کل و فعالیت آنزیم‌های آنتی‌اکسیدان سلول‌های تیمار شده در مقایسه با سلول‌های شاهد به طور‌ معنی‌داری افزایش یافت. حداکثر فعالیت آنزیم کاتالاز در 48 ساعت پس از تیمار سلول‌ها با سالیسیلیک اسید مشاهده شد ولی، بیشترین فعالیت آنزیم سوپراکسیددیسموتاز در 144 ساعت پس از تیمار با متیل جاسمونات بدست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Increased hydrogen peroxide and antioxidant enzymes activity in Iranian poppy cells treated with methyl jasmonate and salicylic acid

نویسندگان [English]

  • Ali Asghar Askari 1
  • naser zare 2
  • rasol asghary zakaria 3
  • Saeed khomary 4

1 MSc. Graduated student of Agricultural Biotechnology, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Associate Professor. Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran.

3 Associate Professor. Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran.

4 Associate Professor. Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran.

چکیده [English]

Salicylic acid and Jasmonates are the natural occurring hormones which involved are in defense mechanisms of plant against biotic and abiotic stresses. In this research, the effect of methyl jasmonate and salicylic acid on content of hydrogen peroxide, proline and total protein and antioxidant enzymes activity were investigated. Cell suspension culture of Iranian poppy was established on liquid MS medium containing 2,4-D, kinetin and ascorbic acid. The cells treated with methyl jasmonate (100 µM) and salicylic acid (75 mg/l), and the cells were evaluated in times 12, 24, 36, 48 and 144 hours after treatment. The results indicated that medium pH increased after cells treatment with methyl jasmonate and salicylic acid. The cell growth and viability were decreased by elicitor treatments, compared to control cells and this reduction was higher on 6 days after treatment. Amount of hydrogen peroxide in the cells treated with methyl jasmonate at all assessed periods was significantly higher than those of cells treated with salicylic acid and control cells. Proline and total protein content and antioxidant enzymes activity of cells were increased significantly by methyl jasmonate and salicylic acid as compared with control cells. The highest activity of Catalase in 48 hours after treatment with salicylic acid and the highest activity of superoxide dismutase in 144 hours after treatment of cells with methyl jasmonate was obtained.

کلیدواژه‌ها [English]

  • Cloning and Expression
  • Escherichia coli
  • Rv1733c
  • Mycobacterium tuberculosis
  • Protein purifcation
Abdelgawad, Z.A., Khalafaallah, A.A. and Abdallah, M.M. (2014) Impact of methy jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agricultural Sciences 5: 1077-1088.
 Aebi, H. (1984) Catalase in vitro. Methods in Enzymology 105: 121-126.
 Ashraf, M. and Foolad, M.R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59:206-216.
 Bassi, R. and Sharma, S.S. (1993) Changes in proline content accompanying the uptake of zinc and copper minor. Annals of Botany 72:151-154.
 Bates, L.S., Waldren, R.P., and Teare, I. D. (1973) Rapid determination of free proline in water-stress studies. Plant and Soil 39: 205-207.
 Baxter, A., Mittler, R., and Suzuki, N. (2014) ROS as key players in plant stress signaling. Journal of Experimental Botany 65: 1229-1240.
 Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
 Chance, B. and Maehly, A.C. (1955) Assay of catalases and peroxidases. Methods in Enzymology 11: 764-755.
 Chao, H.Y., Rhee, H.S., Yoon, S.Y. and Park, J.M. (2008) Differential induction of protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension culture by methyl jasmonate and yeast extract. Journal of Microbiology and Biotechnology 18(2): 255-262.
 Dong, J., Wan, G., and Liang, Z. (2010) Accumulation of salicylic acid induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology 148: 99-104.
Franco, R., Schoneveld, O., and Georgakilas, G. A. (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Letters 266: 6- 11.
 Fritz, V.A., Justen, V.L., Bode, A.M., Schuster, T. and Wang, M. (2010) Glucosinolate enhancement in cabbage induced by jasmonic acid application. HortScience 45:1188-1191.
 Giannopolitis, C.N. and Ries, S.K. (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiology 59: 309-314.
Gill,S. S., and Tuteja, N. (2010). Reactive Oxygen Species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry 48:909-930.
 Goossens, A., Hakkinen, S., Laakso, I., Seppanen-Laakso, T., Biondi, S., De sutter, V.,Lammertyn, F., Nuutila, A., Soderlund, H. and Zabeau, M. (2003) A functional genomics approach toward the understanding of secondary metabolism
in plant cells. Proceedings of the National Academy of Sciences (PNAS) 100:8595-8600.
 Hare, PD., Cress, W.A. and Van Staden, J. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment 21: 535-553.
 Heidarvand, L. and Maali-Amiri, R. (2013) Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. Journal of Plant Physiology 170(5):459-69.
 Johannes, E., Collings, D.A., Rink, J.C. and Allen, N.S. (2001) Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes. Plant Physiology 127:119-130.
 Jung, S. (2004) Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Plant physiology and Biochemistry 42: 231-255.
 Kazemi Shahandashti, S.S., Maali Amiri, R. and Zeinali, H. (2013) Change in membrane fatty acid compositions and cold-induced responses in chickpea. Molecular Biology Reports 40(2): 893-903.
 Loreto, F. and Velikova, V. (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127: 1781-1787.
 Mahmood, M., Bidabadi, S.S., Ghobadi, C. and Gray, D.J. (2012) Effect of methyl jasmonate treatments on alleviation of polyethylene glycol-mediated water stress in banana shoot tip cultures. Plant Growth Regulation 68: 161-169.
 Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., and Reimmann, C. (2001) Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. The Plant Journal 25: 67-77.
 Metraux, J. P. (2001) Systemic acquired resistance and salicylic acid: current state of knowledge. Eurpean Journal of Plant Pathology 107: 13-18.
 Milo, J., Alvy, A., Palevitch, D. and Ladizinsky, G. (1987) Thebaine content and yield in induced tetraploid and triploid plants of papaver bracteatum Lindl. Euphytica 36: 361-367.
 Munns, R. (2005). Genes and salt tolerance: bringing them together. The New Phytologist 167: 645-663.
 Mur, L.A., Kenton, P., Atzorn, R., Miersch, O. and Wasternack, C. (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death.Plant Physiology 140: 249–262.
 Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum Journal 15: 473-497.
 Nafie, E., Hathout, T. and Al Mokadem, A. (2011) Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Brazilian Journal of Plant Physiology 23(2): 161-174.
 Naidu, B.P., Paleg, L.G., Aspinall, D., Jennings, A.C. and Jones, G.P. (1991) Amino acid and glycine betaine accumulation in coldstressed wheat seedlings. Phytochemistry 30: 407-409.
 Nazari, M.R., Habibpour Mehraban, F. and Maali Amiri, R. (2012) Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russian Journal of Plant Physiology 59(2): 183-89.
 Norastehnia, A. and Nojavan-Asghari, M. (2006) Effect of methyl jasmonate on the enzymatic antioxidant defense system in maize seedling subjected to paraquat.Asian Journal of Plant Sciences 5: 17-23.
 Phillipson, J. D. 1990. Plants as source of valuable products. Pp: 1-21. in: B. V. Charlwood and M. J. C. Rhodes (eds). Secondary Products from Plant tissue culture.Oxford, Clarendon Press.
 Polle. A. (2001) Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology 126(1): 445-62.
 Pozo, M. J., Van Loon, L.C. and Pieterse, C.M.J. (2004) Jasmonates-signals in plantmicrobe interactions. Plant Growth Regulation 23: 211-222.
 Ravishankar, G. A. and Rao, S. R. (2004) Biotechnological production of phyto-pharmaceuticals.The Journal of Biochemistry Molecular Biology & Biophysics 4: 73-102.
 Rezaei, A., Ghanati, F., and Behmanesh, M. (2011) Increased taxol production and release by methyl jasmonate, ultrasound, and dibutyl phthalate in hazelnut (Corylus avellana L.) cell culture. Iranian Journal of Plant Biology 7: 55-72.
 Rezaei, A., Ghanati, F., Behmanesh, M., Safari, M. and Sharafi. M. (2013) Synergistic accumulative effect of salicylic acid and dibutyl phthalate on paclitaxel production in Corylus avellana cell culture. Journal of Stress Physiology and Biochemistry 9: 157-168.
 Saisavoey, T., Thongchul, N., Sangvanich, P. and Aphichart, K. (2014) Effect of methy jasmonate on isoflavonoid accumulation and antioxidant enzymes in Pueraria mirifica cell suspension culture. Journal of Medicinal Plant Research 8(9):401-407.
 Sanders, D. and Bethke, P. (2000) Membrane transport. Pp: 110-158. in: B.B. Buchanan.,W. Gruissem and R.L. Jones (eds). Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Biologists.
 Schaller, A. and Oecking, C. (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. The Plant Cell 11: 263–272.
 Sitta Sittampalam, G. (2013) Assay Guidance Manual. in: Riss. T.L., Moravec. R.A., Niles. A.L., Benink. H.A., Worzella. T.L., Minor. L., Storts D., and Reid. Y., Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences.
 Sudha, G. and Ravishankar, G.A. (2002) Involvement and interaction of various signaling compounds on the plant metabolic events during defense response,resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue and Organ Culture 71: 181-212.
 Swiatek, A., Van Dongen, W., Esmans, E. L. and Van Onckelen, H. A. (2004) Metabolic fate of jasmonates in tobacco Bright Yellow-2 cells. Plant Physiology 135: 161-172.
 Tan, J., Zhao, H., Hong, J., Han, Y., Li, H. and Zhao, W. (2008) Effects of exogenous nitric oxide on photo_ synthesis, antioxidant capacity and proline accumu_lation in wheat seedlings subjected to osmotic stress. World Journal of Agricultural Sciences 4: 307-313.
 Tripathy, B.C. and Oelmuller, R. (2012) Reactive oxygen species generation and signaling in plants. Plant Signaling and Behavior 7: 1621-1633.
 Wang, J.W, and Wu, J.Y. (2005) Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant and Cell Physiology 46(6): 923-30.
 Hao, W., Guo, H., Zhang, J., Hu, G., Yao, Y. and Dong, J. (2014) Hydrogen peroxide is involved in salicylic acid-Elicited rosmarinic acid production in Salvia miltiorrhiza cell cultures. The Scientific World Journal, Article ID 843764.
 Xie, Z. and Chen, Z. (1999) Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiology 120: 217-226.
 Zhang, L., and Xing, D. (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant and Cell Physiology
49(7): 1092- 1111.
 Zhang, R.Q., Zhu, H.H., Zhao, H.Q and Yao, Q. (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide,salicylic acid and nitric oxide signaling pathways. Journal of Plant Physiology 170: 74-79.
 Zhao, J., Lawrence, C.D. and Verpoorte, R. (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23:283-233.
 Zitta, K., Meybohm, P. and Bein. B. (2012) Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: influence of oxygen and salicylic acid concentration. Experimental Cell Research 318: 828-834.