اثر شوک گرمایی کوتاه مدت در ناحیه ریشه بر تبادلات گازی (قلب ارغوان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان

2 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان

چکیده

تنشـهای دمائـی یکـی از عوامـل تنـش زای متـداول در گیاهـان اسـت.
تبــادلات گازی بــرگ جــزء اولیــن فرآیندهایــی اســت کــه در گیاهــان،
تحــت تاثیــر دمــا قــرار مــی گیــرد. بــه منظــور بررســی اثــر شــوک
دمایـی کوتـاه مـدت بـر رفتـار روزنـه ای و تبـادلات گازی، آزمایشـی
در دانشـکده کشـاورزی دانشـگاه لرسـتان انجـام گرفـت. بدیـن منظور
ریشـه گیـاه قلـب ارغـوان تحـت سـه تیمـار گرمایـی ( 35،25و 45درجه
ســانتی گــراد) بــه مــدت ده دقیقــه قــرار گرفــت و رفتــار روزنــه ای و
تبـادلات گازی در زمانهـای متفـاوت بعـد از اعمـال تیمار بررسـی گردید.
در تیمــار 35درجــه بلافاصلــه بعــد از اعمــال تیمــار حداکثــر عــرض
منفـذ، هدایـت روزنـه ای و فتوسـنتز مشـاهده گردیـد. نتایج نشـان داد
بـا افزایـش دمـا بـه 35درجـه میـزان فتوسـنتز
%7و مسـاحت روزنـه
%24نسـبت بـه شـاهد افزایـش یافـت، ولـی بـا افزایـش دمـا بـه 45
درجـه میـزان تعـرق
% 40و هدایـت روزنـه ای %14کاهـش نشـان داد.
همچنیـن 30دقیقـه بعـد از اعمـال تیمـار دمایـی 45درجـه سـانتی گراد،
میـزان فتوسـنتز
%72نسـبت بـه زمـان صفـر کاهـش نشـان داد. بـه
طـور کلـی نتایـج نشـان داد کنتـرل دمـای ریشـه نقشـی اساسـی در
رفتـار روزنـه هـای هوایـی، تبـادلات گازی و فتوسـنتز دارد


کلیدواژه‌ها

عنوان مقاله [English]

The effect of short-term heat shock in root zone on gas exchange of Tradescantia pallida

نویسندگان [English]

  • Nabiollah Ashrafi 1
  • Abdolhosain Rezaei Nejad 2

1 Ph.D. Student, , Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University,

2 Associated Professor, Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University,

چکیده [English]

Temperature stress is one of the most common abiotic stress in plant. Leaf gas exchange
is on the first process that is effected by temperature. In order to investigate the effect
of short-term heat shock in root zone on stomatal behavior and gas exchange on Trasescantia,
this experiment was conducted at Faculty of Agriculture, Lorestan University. Roots
were treated with three different temperatures (25, 35 and45 °C) for 10 min and stomatal
behavior were measured. The result showed that aperture and photosynthesis rate were
the highest in 35°C. As temperature increased to 35°C, photosynthesis rate and aperture
area increased 7% and 24%, respectively, compared with those of control plants (25°C).
However, as temperature increased to 45°C, transpiration rate and stomatal conductance
decreased 40% and 14%, respectively, compared with those of control plants. Exposure
of roots to 45°C for 30 min caused 72% reduction in photosynthesis rate. According to
the results, root zone temperature significantly affect stomatal behavior, gas exchange and
photosynthesis.
 

کلیدواژه‌ها [English]

  • photosynthesis
  • stomata resistance
  • temperature stress
Allen, D. J. and Ort D. R. (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in plant science 6 (1): 36-42.

Ashrafi, N. and Nejad A. R. (2016) Stomatal Movement in Response to Root Zone Temperature in Purple Heart (Tradescantia pallida). Journal of Ornamental Plants 6 (3): 133-139.

Azizi, K., Dehaghi A. and Abad H. S. (2004) Growth and development of three annual medicago species under different air and root zone temperatures. Pajouhesh & Sazandegi 64: 58-66 (in Persian).

Babalola, O., Boersma L. and Youngberg C. (1968) Photosynthesis and transpiration of Monterey pine seedlings as a function of soil water suction and soil temperature. Plant Physiology 43 (4): 515-521.

Challa, H. and Van Straten G. (1991) Reflections about optimal climate control in greenhouse cultivation. Mathematical and Control Applications in Agriculture and Horticulture. 13: 13-18.

Cumbus, I. and Nye P. (1982) Root zone temperature effects on growth and nitrate absorption in rape (Brassica napus cv. Emerald). Journal of Experimental Botany 33 (6): 1138-1146.

Gur, A., Bravdo B. and Mizrahi Y. (1972) Physiological responses of apple trees to supraoptimal root temperature. Physiologia Plantarum 27 (2): 130-138.

Haldimann, P. and Feller U. (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat‐dependent reduction of the activation state of ribulose‐1, 5‐bisphosphate carboxylase/oxygenase. Plant, Cell & Environment 27 (9): 1169-1183.

Hutchison, R. S., Groom Q. and Ort D. R. (2000) Differential effects of chilling-induced photooxidation on the redox regulation of photosynthetic enzymes. Biochemistry 39 (22): 6679-6688.

Lawrence, W. T. and Oechel W. C. (1983) Effects of soil temperature on the carbon exchange of taiga seedlings.: I. Root respiration. Canadian Journal of Forest Research 13 (5): 840-849.

Lopushinsky, W. and Kaufmann M. R. (1984) Notes: Effects of Cold Soil on Water Relations and Spring Growth of Douglas-fir Seedlings. Forest Science 30 (3): 628-634.

Reynolds-Henne, C. E., Langenegger A., Mani J., Schenk N., Zumsteg A. and Feller U. (2010) Interactions between temperature, drought and stomatal opening in legumes. Environmental and Experimental Botany 68 (1): 37-43.

Rezaei- Nejad, A. and van Meeteren U. (2008) Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana. Journal of experimental botany 59 (2): 289-301.

Rezaei-Nejad, A. and Van Meeteren U. (2005) Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity. Physiologia Plantarum 125 (3): 324-332.

Rezaei Nejad, A. and Van Meeteren U. (2005) "Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity." Physiologia Plantarum 125 (3): 324-332.

Smith, S., Weyers J. and Berry W. (1989) Variation in stomatal characteristics over the lower surface of Commelina communis leaves. Plant, Cell & Environment 12 (6): 653-659.

Sobeih, W. Y., Dodd I. C., Bacon M. A., Grierson D. and Davies W. J. (2004) Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying. Journal of Experimental Botany 55 (407) : 2353-2363.

Thompson, H. C., Langhans R. W., Both A.-J. and Albright L. D. (1998) Shoot and root temperature effects on lettuce growth in a floating hydroponic system. Journal of the American Society for Horticultural Science 123 (3): 361-364.

Yang, S., Huang C., Wu Z., Hu J., Li T., Liu S. and Jia W. (2006) Stomatal movement in response to long distance-communicated signals initiated by heat shock in partial roots of Commelina communis L. Science in China Series C 49 (1): 18-25.

Yang, Z., Sinclair T. R., Zhu M., Messina C. D., Cooper M. and Hammer G. L. (2012) Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany 78: 157-162.

Zhang, F., Lynch D. H. and Smith D. L. (1995) Impact of low root temperatures in soybean [Glycine max.(L.) Merr.] on nodulation and nitrogen fixation. Environmental and experimental botany 35 (3): 279-285.