بررسی تجزیه زیستی آکریلونیتریل و الیاف آکریلیک حاوی نانوذره نقره- تیتانیوم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده علوم زیستی، دانشگاه الزهرا (س)

2 استاد میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهرا (س)

3 استاد شیمی، دانشکده علوم پایه، دانشگاه الزهرا (س)

چکیده

الیاف آکریلیک حاوی %85 آکریلونیتریل می باشد که به همراه نانوذره نقره -تیتانیوم در صنعت نساجی به عنوان الیاف ضد میکروب استفاده می شود. این الیاف پس از مصرف وارد طبیعت شده و اثر سوءی بر روی محیط زیست و میکروارگانیسم‌های مفید موجود در خاک می‌گذارند. بنابراین تجزیه زیستی این الیاف می‌تواند راه مفیدی برای از حذف آن‌ها از محیط باشد. باتوجه به اینکه این الیاف حاوی نانوذره تیتانیوم- نقره بوده لذا برای جداسازی اولیه، میکروارگانیسم‌های مقاوم به نانوذره جداسازی و سپس تجزیه مونومر تشکیل‌دهنده الیاف و الیاف آکریلیک مورد بررسی قرار گرفت. محیط PHGII حاوی ppm50نانوذره p105 برای جداسازی باکتری های مقاوم به آن استفاده شد وسپس باکتری‌های جداسازی شدهدر محیط BPM که حاوی  ppm1007 آکریلو نیتریل بود، تلقیح گردید و سپس تجزیه آکریلونیتریل توسط دستگاه GC مورد بررسی قرار گرفت. در نهایت الیاف آکریلیک در داخل محیط BPM قرار داده شد و توسط دستگاه HPLC تولید آکریلیک اسید بررسی شد.
در این پژوهش Kluyvera georgiana از پساب کارخانه پلی آکریل اصفهان جداسازی گردیدکه به نانوذره p105 مقاوم و قادر به تجزیهppm969.9 آکریلونیتریل بود اما الیاف آکریلیک توسط این میکروارگانیسم تجزیه نشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of acrylonitrile and nano-silver-titanium acrylic fibers bio-degradation

نویسندگان [English]

  • franak Mavandadnejad 1
  • rouha Kasra-Kermanshahi 2
  • majid Momahed Heravi 3

1 MSc. Student, Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran 2

2 Professor of Biology, Faculty of Science, Alzahra University, Tehran, Iran

3 Professor, Department of Chemistry, Faculty of Science, Alzahra University, Tehran, Iran

چکیده [English]

Polyacrylic fibers which contain 85% acrylonitrileandnano sliver-titanium can be used as antibacterial fibers in textile industry. After consuming these fibers, they can disperse in the environment and become harmful for soil bacteria. Biodegradation of these fibers can be a suitable approach for the removal of these Asnano-silver-titanium was used in the fibers. The microorganisms which were resistant to the nano particle were isolated and biodegradation of the monomer and polymer were investigated. PHGII medium with 50ppm concentration of nano particle (p105) was used for isolating resistant microorganisms. The resistant microorganisms were then inoculated in BPM medium with 1007 ppm acrylonitrile concentration and the degradation of acrylonitrile was investigated by GC. Finally the degradation of acrylic fibers in BPM for the production of acrylic acid was investigated by HPLC. In this study, Kluyvera georgiana was isolated from sludge of Isfahan polyacryl plant that was resistant to 50 ppm nano-silver-titanium (p105) and degraded 969.9 ppm acrylonitrile whilst the bacterium did not degrade the fibers

کلیدواژه‌ها [English]

  • Biodegradation
  • nano-silver
  • acrylic fibers
  • acrylonitrile
Bruce, G .(2007). AcrylicFibers. HandbookofFiberChemistry. ThirdEdition. Edited by Menachem Lewin.

Capone, G. J. Masson, J. C. (2004). Acrylic Fibers. Encyclopedia Of Polymer Science and Technology. Published Online: 15 MAR 2004.

Dias, J. C. T. Rezende, R. P. Rosa, C. A. Lachance, M. Linardi, V. R. (2000). Enzymatic degradation of nitriles by a Candida guilliermondii UFMG-Y65.Canadian Journal of Microbiology. 46: 525–531.

Demakov, V. A. Maksimov, Yu. A. Kuznetsova, M. V. Ovechkina, G. V. Remezovskaya, N. B. Maksimova, Yu. G. (2007). Biological Diversity of Nitrile-Metabolizing Bacteria in Soils of the Perm Region Affected by Human Activities. Ecologia. 38:185–190.

Hoyle, A. J. Bunch, A. W. Knowles, Ch. J. (1989).The nitrilases of RhodococcusrhodochrousNCIMB 11216. Enzyme and Microbial Technology. 23:475–482.

Kim, S. oriel, P. (2000). Cloning and expressin of nitrlehydratase and amidase genes from Bacillus sp.BR449.Escherichia coli. Enzyme and Microbial Technology. 27: 492_501.

Klaus, T. Joerger, R. Osson, E. Granqvist, Cl. (1999) Silver-based Crystalline Nanoparticles, Microbial Fabricated. Journal of Applied Physics;96:(24)13611-13614.

Kohyama, E, Dohi, M, Yoshimura, A, Yoshida ,T, Nagasawa, T. (2007). Remaining acetamide in acetonitrile degradation using nitrile hydratase- and amidase-producing microorganisms.Applied Microbiology and Biotechnology. 74:829–835.

Kobayashi, M .Shimizu, S. (2000) Nitrile hydrolases. Current Opinion in Chemical Biology. 4:95–102.

Kobayashi, M .Yana, N. Nagasawa, T. Yamada, H. (1999) Purification and Characterization of a Novel Nitrilase of Rhodococcusrhodochrous K22 That Acts on Aliphatic Nitriles.Journal of Bacteriology. 172: 4807-4815.

La-lei, Zh. ,Jianfu, Zh. GuGuo, Wei. (2003). Biodegradation kinetic organic compound of acrylic fibr wastewater in biofilm.Journal of Environmental Sciences. 15:(6).757-761.

Linton, E.A and Knowles, Ch.J. (1986). Utilization of aliphatic amides and nitriles by Nocardi arhodochrous LL100-21. The Journal of General and Applied Microbiology. 132:1493-1501.

Martinkova, L., Vejvoda, V., Kaplan, O., Kubáč, D., Malandra, A and Pumpel. T. (1999). A rapid screening method for the isolation of metal accumulating microorganism. Journal of Industrial Microbiology & Biotechnology. 14:213-217.

Padmakumar, R and Oriel, P. (1999). Bioconversion of Acrylonitrile to Acrylamide Using a Thermostable Nitrile Hydratase. Applied Microbiology and Biotechnology. 77:671-679.

Shahverdi, A.R., Minaeian, S.Shahverdi, H.R and Nohi, A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem.42: 919–923.

Sari, M. Jaouen, M. RaoSaroja, N. Artaud, I. (2007). Influence of cobalt substitution on the activity of iron-type nitrile hydratase: Are cobalt type nitrile hydratases regulated by carbon monoxide? Journal of Inorganic Biochemistry.101: 614–622.

Shrivastava, S., Bera, T., Roy, A., Singh, G. Ramachandrarao, P.Dash,D.(2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 18:1-9

Scorzoni, L. Benaducci, T. Almeida, A.M. Silva, F., Bolzani, D.H.S and Mendes-Giannini, M. J. S. (2007). Comparative study of disk diffusion and microdilution methods for evaluation of antifungal activity of natural compounds against medical yeasts Candidaspp and Cryptococcus sp. Journal of Pharmaceutical Sciences. 28:25-35.

Singh, R., Sharmac, R., Tewarib, N., Jalid. G and Rawata, D. S. (2006). Nitrilase and Its Application as a _Green_ Catalyst. Chemistry & Biodiversity. 3:1279-1282.

Tauber, M., M.Cavaco-Paulo, A., Robra, K.H. and Bitiz, G.GU, M. (2000). Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Applied and Environmental Microbiology. 64:1634-1638.

Wang, Ch., Lee, Ch and Chen, Li-Jung. (2007). Removal of Nitrile from Synthetic Wastewater by Acrylonitrile Utilizing Bacteria Journal of Environmental Health. 39: (7).1767-1779.

Watanabe, I. Satoh, Y. and Nomoto, K. (1987). Screening, Isolation and Taxonomical Properties of Microorganisms Having Acrylonitrile hydrating Activity. Agricultural and Biological Chemistry.51: (3)193-3199.

Zhou, Z. ashimo, YH. Kabayashi, M. (2005). Nitrile degradation by Rhodococcus:useful microbial metabolism for industrial products. Actinomyceological. 19:18-26.