Seyed Reza Garakoui; Khosro Issazade; Hojjatolah Zamani; Roohan Rakhshaee; Mahdi Shahriarinour
Abstract
Introduction: Owing to the high cytotoxicity, introduction of anticancer pharmaceuticals to the encironment via pharmaceutical and hospital effluents is regarded a major health threat for eukaryotes. Exploring bacterial cells, as prokaryotic organisms, could be a novel approach for the removal of these ...
Read More
Introduction: Owing to the high cytotoxicity, introduction of anticancer pharmaceuticals to the encironment via pharmaceutical and hospital effluents is regarded a major health threat for eukaryotes. Exploring bacterial cells, as prokaryotic organisms, could be a novel approach for the removal of these compounds. Therefore, in this study, we aimed to isolate and identify oxaliplatin degrading bacteria from pharmaceutical wastewater samples and to evaluate their oxaliplatin removal potential as single and multi-species systems. Materials and Methods: Bacterial isolation was performed using the membrane filtration method and the inhibitory effect of the drug for the isolated bacteria was evaluated in 96-well plates. Finally, oxaliplatin removal efficacy of the single and multi-species bacterial populations was determined using the High-Pressure Liquid chromatography (HPLC). Results: A total number of five bacterial species, including Enterobacter agglomerans, Citrobacter youngae, Xenorhabdus nematophilis, Bacillus lichineformis and Moraxella spp.able to degrade oxaliplatin were isolated. The highest and least oxaliplatin degrading potential was observed for B. lichiniformis (52%) and E. agglomerans (21%), respectively. Also, the multi-species treatment containing B. lichineformis, X. nematophilis, E. agglomeran showed the highest oxaliplatin removal efficacy (79%). Conclusion: This work reveals that the bacteria isolated from pharmaceutical effluents could be employed for oxaliplatin removal and could be considered as a novel approach for the reduction of pharmaceutical pollutants.