Bahareh Zarei; Khadijeh Kiarostami; Monir Hosseinzade Namin; Mona Sorahinobar
Abstract
Silicon nanoparticles have distinctive physicochemical characteristics. They are able to enter into plants and impact the metabolisms of plants as well as improve plant growth and yield under unfavorable environmental conditions. This research was done in order to study the physiological effects of nanosilicon ...
Read More
Silicon nanoparticles have distinctive physicochemical characteristics. They are able to enter into plants and impact the metabolisms of plants as well as improve plant growth and yield under unfavorable environmental conditions. This research was done in order to study the physiological effects of nanosilicon on Crocus sativus corm. The corms were treated with silicon nanoparticles in concentrations of 0, 9 and 18 mg L−1. The experiment was done as completely randomized design in three replicates. The results showed that nano-silicon treatment increased content of silicon, potassium, iron, zinc, magnesium and calcium contents in plants but did not affect the fresh and dry weight as well as protein content, significantly. Moreover, the number of daughter corms, malondialdehyde and proline content significantly increased in nano-silicon treated plants as compared to non-treated control. The maximum content of total phenolics and flavonoid content were observed in plants treated with 9 and 18 mgL-1 respectively. Based on the results, it can be concluded that the examined concentrations of silicon nanoparticles can increase saffron corm nutrient content, its capacity of antioxidant system by the production of secondary metabolites.
Arefeh Mohammadi Sanjani; Monir Hosseinzadeh; mona sorahi
Abstract
Silver nanoparticles are widely used in industry, medicine, biotechnology and agriculture. As a consequence, these nanoparticles are reaching the environment as waste products, which might have a negative impact on the environment, especially on plants. In this study, the effects of two concentrations ...
Read More
Silver nanoparticles are widely used in industry, medicine, biotechnology and agriculture. As a consequence, these nanoparticles are reaching the environment as waste products, which might have a negative impact on the environment, especially on plants. In this study, the effects of two concentrations (5 and 7 ppm) of silver nanoparticles on safflower (Carthamus tinctorius) were investigated in vitro. Increased germination rate in from 70% (in non treated control) up to 90% (in 7 ppm nanosilver treated seeds) was bserved. 5% higher dry weight biomas in 5 ppm nanosilver treated plants and 12% lower biomas in 7% treated ones as compared to their non-treated controls confirmed that the toxicity threshold level is between these two concentrations. Increased thickness of epidermis layer and root hairs length as well as deletion of schloranchima cells in roots under silver nanoparticle was observed in anatomical study of safflower. The results also showed a remarkable decrease in and proline content in root while induction of MDA and proline content was observed in shoot under nanosilver treatment that can be an indicator for induction of oxidative stress in shoot by treatment. Moreover, nanosilver causes induction of chlrophyll a, total chlrophyll and carotenoid contenten in safflower.