اثر نانو ذرات نقره بر ظرفیت آنتی اکسیدان و الگوی پروتئین محلول کل در گیاهچه‌های گوجه در شرایط این ویترو

نوع مقاله: مقاله پژوهشی

نویسنده

دانشیار، گروه زیست شناسی، دانشگاه پیام نور، صندوق پستی3697-19395، تهران- ایران

چکیده

 در این مطالعه تاثیر نانو ذرات نقره در اندازه‌های بین 94/53 و 5/288 نانومتر و در غلظت‌های 0، 5/2، 5، 10، 20، 40، 80 و 100 پی­پی­ام بر روی تغییرات شاخص های فیزیویولوژیکی مانند آنتوسیانین کل، الگوی پروتئین محلول کل و فعالیت آنزیم‌های کاتالاز، آسکوربات پراکسیداز و سوپراکسید دیسموتاز گیاهچه­های گوجه (Solanum Lycopersicon)در محیط کشت درون شیشه مورد بررسی قرارگرفت. نتایج نشان داد که میزان آنتوسیانین در پاسخ به حضور نانوذرات نقره کاهش معنی‌داری را تا غلظت 10 پی‌پی‌ام به دنبال داشته است. پروتئین محلول کل گیاه با افزایش غلظت نانوذره در اندام هوایی افزایش و در ریشه با افزایش غلظت در 20 و 40 پی پی ام نسبت به شاهد کاهش نشان داد. همچنین شدت بیان شش باند پروتئینی تحت تیمار با نانو ذرات نقره تغییر نمود.با افزایش غلظت نانو ذرات در محیط کشت  افزایش در فعالیت آنزیم‌های آنتی اکسیدانت در ریشه‌ها و  اندام هوایی مشاهده گردید.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of silver nanoparticles on the antioxidant capacity and total soluble protein pattern in tomato seedlings under in vitro culture

نویسنده [English]

  • Roya Razavizadeh

Department of Biology, Payame Noor University, PO BOX 19395-3697 Tehran, Iran.

چکیده [English]

 



TodayToday, synthetic nanoparticles encompass a wide range of particles with unique properties and have many applications in the field of nanotechnology. Due to the emergence and lack of understanding of the consequences of using nanoparticles, investigating the effect of releasing these particles in the environment at various biological levels is important. In this study, the effects of nanoparticles of silver in concentrations of 0, 2.5, 5, 10, 20, 40, 80 and 100 ppm on physiological parameters such as total anthocyanin, total soluble protein and enzyme activities of Catalase, Ascorbate peroxidase and Superoxide dismutase in tomato seedlings (Solanum Lycopersicon) under in vitro were evaluated. The results showed that anthocyanin levels in response to the presence of silver nanoparticles decreased significantly to 10 ppm concentration. The total protein soluble protein increased with increase in the concentration of nanoparticles in the shoot and decreased with increasing concentrations at 20 and 40 ppm compared to the control. The intensity of expression of six protein bands treated with silver nanoparticles also changed. Increasing the concentration of nanoparticles in the medium increased the activities of catalase and superoxide dismutase and decreased ascorbate peroxidase activity in the roots. However, in shoot, increased activity of peroxidase and catalase, and decreased activity of superoxide dismutase in response to high concentrations of silver nanoparticles. The results indicated that the presence of silver nanoparticles in the tomato culture medium leads to responses at physiological and molecular levels.

کلیدواژه‌ها [English]

  • antioxidant enzymes
  • nanotechnology
  • silver nanoparticles
  • total soluble protein

Aebi, H. (1984). Catalase in vitro. Method in Enzymology, 105: 121-126.

Amini, F., Ehsanpour, A.A., Hoang, Q.T. and Shin, J.Sh. (2007). Protein pattern changes in tomato under in vitro salt stress. Russian Journal of Plant Physiology, 54(4): 464-471.

Baker, S., Rakshith, D., Kavitha, K.S., Santosh, P., Kavitha, H.U., Rao, Y. and Satish, S. (2013). Plants: emerging as nano factories towards Facimile route in synthesis of nanoparticles. Bioimpacts, 3: 111–117.

Basra, A. S. and Basra, R. K. (1997). Mechanisms of environmental stress resistance in plants. Pp.1-43. Hardwood Academic, Amsterdam, Netherlands.

Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D.S. and Autrup, H. (2012). Toxicity of silver nanoparticles or silver ion. Toxicology Letter, 208: 286-292.

Beyer, E.M. (1976). A potent inhibitor of ethylene action in plants. Plant Physiology, 58: 268-271.

Beyer, E.M. (1979). Effect of silver ion, carbon dioxide and oxygen on ethylene action and metabolism. Plant Physiology, 63: 169-173.

Bor, M., Ozdemir, F. and Turkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science, 164: 77-84.

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.

 

Chen, X. and Schluesener, H.J. (2008). Nanosilver: A nanoproduct in medical application. Toxicology Letter, 176: 12-1.

Danaee, E., Naderi, R., Kalatejari, S. and Ladan Moghadam, A.R. (2013). Evaluation the effect of nano silver with salicylic acid and benzyl adenine on longevity of Gerbera flowers. Journal of Basic and Applied Scientific Research, 3(8): 682-690.

Dat, J., Vandenabeele, S., Vranova, ´E., Van Montagu, M., Inze, ´D. and Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses.  Journal of Cellular and Molecular Life Sciences, 57: 779–795.

Davies, R.L. and Etris, S.F. (1997). The development and functions of silver in water purification and disease control. Catalysis Today, 36: 107–114.

Faunce, T. and Watal. (2010). Nanosilver and global public health: international regulatory issues. Nanomedicine, 5(4): 617–632.

Feierabend, J. and Dehne, S. (1996). Fate of the porphyrin cofactors during the light dependent turnover of catalase and of the photosysem II reaction center protein DI in mature rye leaves. Planta, 198: 413–422.

Feierabend, J. and Engel, S. (1986). Photo inactivation of catalase in vitro and in leaves. Archives of Biochemistry and Biophysics, 251: 567–576.

Gavanji, S.h., Abdul Aziz, H., Larki, B. and Mojiri, A. (2013). Bioinformatics prediction of interaction of silver nitrate and nanosilver on catalase and nitrat reductase. International Journal of Scientific Research in Environmental Sciences, 1(2): 26-35.

Geho, D.H., Jones, C.D., Petricoin, E.F. and Liotta, L.A. (2006). Nanoparticles: potential biomarker harvesters. Current Opinion in Chemical Biology, 10(1): 56-61.

Giannopolitis, C.N. and Ries, S.K. (1977). Superoxide dismutase: Occurrence in higher plants. Plant Physiology. 59: 309-314.

Glavaš Ljubimir K., Radić Brkanac S., Cvjetko P., Vujčić V., Ljubimir S., Pevalek-Kozlina B., (2012). Toxicity of silver nanoparticles in Duckweed (Lemna minor L.). International Conference-Plant Growth, Nutrition and Environment Interactions, Austrija, Beč.

Hamdia, M.A and Shaddad, M.A.K. (2010). Salt tolerance of crop plants. Journal of Stress Physiology and Biochemistry, 6(3): 64-90.

Hashemi, S., Asrar, Z. and Pourseyedi, S. (2010). Effects of seed pretreatment by salicylic acid on growth and some physiological and biochemical parameters in Lepidium sativum. Iran Journal Plant Biology, 2(2): 1-10.

Hatami, M. and Ghorbanpour, M. (2013). Defense enzyme activities and biochemical variations of Pelargonium zonale in response to nano silver application and dark storage, Turkish Journal of Biology, 38 (1): 130-139

Hatami, M. and Ghorbanpour, M. (2013). Effect of nano silver on physiological performance of Pelargonium plants exposed to dark storage. Journal of Horticultural Research, 21(1): 15-20.

Jahnke, L.S. and White, A.L. (2003). Long-term hypo saline and hypersaline stresses produce distinct antioxidant responses in the marine algae Dunaliella tertiolecta. Journal of Plant Physiology, 160: 1193–1202.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259): 680-685.

Lee, D.H., Kim, Y.S. and Lee, C.B. (2001). The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Phyiology, 158: 737–745.

Mars, K.A., Alfenito, M.R., Loyd, A.M. and Valbot, V.A. (1995). Glutathione s-transferase involved in vacuolar transfer encoded by the maize gene bronze-2. Nuture, 375: 397-400.

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Science. 7: 405–410.

Munne-Bosch, S., Penuelas, J., Asensio, D. and Llusia, J. (2004). Airborne ethylene may alter antioxidant protection and reduce tolerance of Holm Oak to heat and drought stress. Plant Physiology, 136: 2937-2947.

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.

Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5): 867-880.

Olson, B.J.S.C. and Markwell, J. (2007). Current protocols in protein science. Detection and Assay Method. 48: 3.4.1-3.4.29.

Panyala, N.R., Pena-Mendez, E.M., Havel, J. (2008). Silver or silver nanoparticles: a hazardous threat to the environment and human health. Journal of Applied Biomedicine, 6: 117-129.

Prasad, M. N. V. (1997) Plant Ecophysiology: Trace Metals. Pp. 207. In:  John Wiley and Sons, New York.

Qian, H.F., Chen, W., Sheng, G.D., Xu, X.Y., Liu, W.P. and Fu, Z.W. (2008). Effects of glufosinate on antioxidant enzymes, subcellular structure and gene expression in the unicellular green alga Chlorella vulgaris. Aquatic Toxicology, 88: 301-307.

Qian, H.F., Hu, H.J., Mao, Y.Y., Ma, J., Zhang, A.P. and Liu, W.P. (2009). Enantioselective phytotoxicity of the herbicide imazethapyr in rice. Chemosphere, 76(7): 885-892.

Qian, H., Peng, X., Han, X., Ren, J., Sun, L. and Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ion on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25: 1947–1955.

Quadros, M.E. and Marr, L.C. (2010). Environmental and human health risks of aerosolized silver nanoparticles. Journal of the Air and Waste Management Association, 60: 770–781.

Ratte, H.T. (1999). Bioaccumulation and toxicity of silver compounds. Enviromental Toxicology and Chemistry, 18(1): 89-108.

Ravanel, S., Gakiere, B., Job, D. and Douce, R. (1998). The specific features of methionine biosynthesis and metabolism in plants. Proceedings of the National Academy of Sciences, 95: 7805-7812.

Rostami, F. and Ehsanpour, A. A. (2009). Application of silver thiosulfate (STS) on silver accumulation and protein pattern of potato (Solanum tuberosum L.) under in virto culture. Malaysian Applied Biology Journal, 32(2): 49-54.

Salama, H. M. H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnolgy, 3: 190–197.

Salehi, Z. and McCarthy, J.E.G. (2002). Structure and function of cap-associated proteins in yeast. Ph.D thesis. Department of Biomolecular Sciences, University of Manchester, Institute of Sciences and Technology (UMIST), Manchester, England.

Schuzendubel, A. and Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372): 1351-1365.

Sudhakar, C., Lakshmi, A., and Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161: 613–619.

Wagner, G.J. (1979). Content and vacuole/extra vacuole distribution of neutral sugars free amino acids and anthocyanins in protoplast. Plant Physiology, 64: 88-93.

Wijnhoven, S.W., Peijnenburg, W.J., Herberts, C.A., Hagens, W.I., Oomen, A.G., Heugens, E.H., Roszek, B., Bisschops, J., Gosens, I. and Van De Meent, D. (2009). Nano-silver: Available data and knowledge gaps in human and environmental risk assessment. [Review]. Nanotoxicology, 3: 109–138.