بهبود اثرات تنش شوری با سیلیکون در ارقام چیتی و سبز لوبیای معمولی(Phaseolus vulgaris)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته ارشناسی ارشد فیزیولوژی گیاهی دانشگاه شهرکرد

2 استادیار گروه زیست شناسی دانشکده علوم دانشگاه شهر کرد

چکیده

پژوهش حاضر اثر تغذیه سیلیکونی (5/0 و 1 میلی‌مولار) در دو رقم لوبیا (Phaseolus vulgaris) (لوبیا چیتی و لوبیا سبز) تحت شوری ناشی از کلریدسدیم (50 میلی‌مولار) بررسی شد. برای هر رقم، آزمایشی مستقل در قالب طرح کاملاً تصادفی روی دانه‌رست‌های 12 روزه انجام گرفت و تا چهار هفته اعمال تیمارها ادامه یافت. صفات مورد ارزیابی عبارت بود از وزن خشک ساقه و ریشه، میزان کلروفیل کل، نشت الکترولیتی غشاء، محتوای نسبی آب و پرولین برگها، غلظت کاتیونهای Na+ و K+ در ریشه و ساقه. نتایج نشان داد تنش شوری باعث کاهش معنی‌دار در بیوماس، غلظت K+، کلروفیل کل و محتوای نسبی آب برگ‌‌ها می شود ولی بر میزان غلظت Na+، پرولین و نشت الکترولیت‌ها افزوده شد. همراه با تغذیه سیلیکونی درصد ارتقاء بیوماس در لوبیا چیتی بیش از لوبیا سبز بود. داده‌های این پژوهش پیشنهاد می‌کند سیلیکون با جلوگیری از ورود سدیم اضافی و کاهش نشت الکترولیتی همراه با بالا بردن محتوای نسبی آب تحمل به تنش شوری را در لوبیا چیتی افزایش می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Silicon-mediated alleviation of salt stress in pinto and green bean varieties (Phaseolus vulgaris L.)

نویسندگان [English]

  • Hadi Nosrati 1
  • Parto Roshandel 2

1 Graduated from the Department of Plant Physiology, Shahrekord University

2 Assistant Professor of Biology Department, Faculty of Sciences, Shahrekord University

چکیده [English]

In the present study the effects of Si (0.5 and 1 mM) have been investigated in two varieties of Phaseolus vulgaris (pinto bean and green bean) subjected to salinity (50 mM). Two series of experiments were separately arranged in completely randomized design for each of bean varieties and 12-day-old seedlings were introduced to the treatments which lasted for four weeks. The evaluated parameters were dry matters of the shoots and roots, total chlorophyll contents, membrane electrolyte leakage, proline and relative water content of leaves, Na+ and K+ concentrations in the shoots and roots. The results indicated salt stress significantly decreased biomass, K+ level, total chlorophyll and relative water content of leaves, whilst the concentration of Na+, proline and membrane electrolyte leakage increased. Si nutrition caused a marked increment in percentage of biomass in pinto bean which it was more than that of in green bean. Data analysis suggests Si increases salt tolerance in pinto bean by relatively blocking of Na+ entrance along with increasing relative water content of leaves and decreasing membrane electrolyte leakage in the leaves.

کلیدواژه‌ها [English]

  • K+ /Na+ selectivity
  • pinto and green beans
  • salt tolerance
  • Si

 اشکاوند، پ.، طبری کوچکسرایی، م.، زرافشار، م. و قنبری، ا. 1395. اثر نانوذرات سیلیکا (SiO2 NPs) روی صفات رویشی و فیزیولوژیکی نهال زالزالک زرد.  علوم و فناوری چوب و جنگل (علوم کشاورزی و منابع طبیعی). دوره 23 شماره 1، ص 41-61.

 اکبری مقدم، ح. 1391. تسهیم ماده خشک و عکس العمل­های مورفوفیزیولوژیکی ارقام گندم تحت تاًثیر تنش خشکی در مراحل مختلف رشد. پایان نامه دکتری زراعت، دانشکده کشاورزی دانشگاه زابل، ص151.

حداد، ر. و مشیری، ز. 1389. تاثیر سیلیکون در افزایش تحمل به خشکی در مرحله دو برگی گیاه جو. ژنتیک نوین. جلد 5 شماره 4، ص 47-58.

خواجه، م.، موسوی نیک، س. م.، سیروس مهر، ع.، یدالهی ده چشمه، پ. و امیری، ا. 1394. اثر تنش کم آبی و محلول پاشی سیلیکون بر عملکرد و رنگیزه های فتوسنتزی گندم در منطقه سیستان. فیزیولوژی گیاهان زراعی. دوره 7 شماره 26، ص 5-19.

طالع احمد، س. و حداد، ر. 1389 .اثر سیلیکون بر فعالیت آنزیم­های ضدا­کسنده و محتوای تنظیم کننده­های اسمزی در دو ژنوتیپ گندم نان در شرایط تنش خشکی. مجله به زراعی نهال و بذر. جلد 26 شماره 2، ص 207-225.

Ahmad, R., Zaheer, S.H. and Ismail, S. (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum). Plant Science 85: 43–50.

Ahmed, M., Asif, M. and Hassan, F. U. (2014) Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiologiae Plantarum 36(2): 473-483.

Bates, L. S., Waldren, R. P. and Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207.

Gong, H.J., Randall, D.P. and Flowers, T.J. (2006) Silicon deposition in the root reduces sodium uptake in rice seedlings by reducing bypass flow. Plant, Cell and Environment 29: 1970-1979.

Haghighi, M., Afifipour, Z. and Mozafarian, M. (2012) The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Vegetable Crops Research Bulletin 76: 119-126.

Kaya, C., Tuna, A. L., Sonmez, O., Ince, F. and Higgs, D. (2009) Mitigation effects of silicon on maize plants grown at high zinc. Journal of Plant Nutrition 32(10): 1788-1798.

Liang, Y.C., Chen, Q., Liu, Q., Zhang, W.H. and Ding, R.X. (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology 160: 1157-1164.

Munns, R., Husain, S., Rivelli, A. R., James, R., Condon, A. G., Lindsay, M., Lagudah, E., Shachtman, D. and Hare, R. (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically-based selection traits. Plant and Soil 247: 93–105.

Neumann, D. and De Figueiredo, C. (2002) A novel mechanism of silicon uptake. Protoplasma 220: 59-67.

Parveen, N. and Ashraf, M. (2010). Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pakistani Journal of Botany 42(3): 1675-1684.

Pavlovic, J., Samardzic, J., Maksimović, V., Timotijevic, G., Stevic, N., Laursen, K. H. ... and Nikolic, M. (2013) Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist 198(4): 1096-1107.

Richmond, K.E. and Sussman, M. (2003) Got Silicon? The non-essential beneficial plant nutrition. Current Opinion in Plant Biology 6: 268-272.

Rodrigues, F.A., Benhamou, N., Datnoff, L.E., Jones, J.B. and Be´langer, R.R. (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology, 93: 535–546.  

Roshandel, P. (2005) Physiology and gene expression of two genotypes of rice differing in tolerance to salinity. PhD thesis. Sussex University, Brighton, UK.

Sharma, K.D. and Kuhad, M.S. (2006) Influence of Potassium level and soil moisture regime on biochemical metabolites of Brassica Species. Brassica Journal 8: 71-74.

Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H. and Gong, H. (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry 78: 27-36.

Lichtenthaler, H. K. and Buschmann, C. (2001) Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. In: Current protocols in food analytical chemistry, F4.3.1-F4.3.8. John Wiley and Sons, Inc. New York.

Tuna, A.L., kaya, G., Higgs, D., Bernardo, M.D., Aydemir, S. and Girgin, A.R. (2008) Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany 62:10-16.

Wang, Y., Stass, A. and Horst, W. (2004) Apoplastic binding of aluminium is involved in silicon-induced amelioration of aluminium toxicity in maize. Plant Physiology 136: 3762-3770.

Yeo, A.R., Flowers, S.A., Rao, G., Welfare, K., Senanayake, N. and Flowers, T.J. (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment 22: 559-565.

Yin, L., Wang, S., Liu, P., Wang, W., Cao, D., Deng, X. and Zhang, S. (2014) Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiology and Biochemistry 80: 268-277.

Zarafshar, M., Akbarinia, M., Askari, H., Hosseini, S. M., Rahaie, M. and Struve, D. (2015) Insignificant acute toxicity of SiO2 nanoparticles to pear seedlings. International Journal of Nanoscience and Nanotechnology 11 (1): 13-22.

 Zhu, Z.J., Wei, G.Q., Li, J., Qian, Q.Q. and Yu, J.Q. (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167: 527-533.

Zuccarini, P. (2008) Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum 52(1): 157- 160.